首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Atmospheric-pressure matrix-assisted laser desorption/ionization (AP-MALDI) ion trap mass spectrometry (ITMS) has been evaluated for automated protein identification. By using signal averaging and long ion-injection times, protein identification limits in the 50-fmol range are achieved for standard protein digests. Data acquisition requires 7.5 min or less per sample and the MS/MS spectra files are automatically processed using the SEQUEST database searching algorithm. AP-MALDI-ITMS was compared with the widely used methods of microLC/MS/MS (ion trap) and automated MALDI-TOF peptide mass mapping. Sample throughput is 10-fold greater using AP-MALDI compared with microcapillary liquid chromatography/tandem mass spectrometry (microLC/MS/MS). The protein sequence coverage obtained from AP-MALDI-MS/MS spectra matched by SEQUEST is lower compared with microLC/MS/MS and MALDI-TOF mass mapping. However, by using the AP-MALDI full-scan peptide mass fingerprint spectrum, sequence coverage is increased. AP-MALDI-ITMS was applied for the analysis of Coomassie blue stained gels and was found to be a useful platform for rapid protein identification.  相似文献   

2.
An ultrasonic bath, an ultrasonic probe and a sonoreactor were used to speed up the kinetics of the reactions involved in each step of the sample handling for in-gel protein identification by peptide mass fingerprint, PMF, using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS). The following steps were successfully accelerated using ultrasonic energy: gel washing, protein reduction, and protein alkylation. As a result, a reduction comprising 80% to 90% of the total time involved in the classic approach was achieved. In addition the sample handling was also drastically simplified. The number of peptides identified and the protein sequence coverage obtained for the new procedure were comparable to those obtained with the traditional sample treatment for the following protein standards: glycogen phosphorylase b, BSA, ovalbumin, carbonic anhydrase, trypsin inhibitor and alpha-lactalbumin. Finally, as a proof of the procedure, specific proteins were identified from complex protein mixtures obtained from three different sulphate-reducing bacteria: Desulfovibrio desulfuricans G20, Desulfuvibrio gigas NCIB 9332, and Desulfuvibrio desulfuricans ATCC 27774.  相似文献   

3.
Digests from ten gel bands containing low abundance proteins were analyzed by both matrix-assisted laser desorption/ionization ion trap (MALDI-IT) and matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry (MS) methods. MALDI-TOF techniques were able to identify only one protein from all 10 gel bands, while MALDI-IT identified eight proteins from the same 10 bands. The ability to perform MS/MS experiments with a MALDI-IT instrument leads to protein identifications based on both peptide molecular mass and sequence information, and is much less prone to errors and uncertainties introduced by peptide fingerprinting methodologies in which protein identification is based on peptide molecular masses alone.  相似文献   

4.
Here we have examined the effect of sodium dodecyl sulfate (SDS) at various concentrations on matrix-assisted laser desorption/ionization (MALDI) peptide mass fingerprinting experiments. Several model proteins were digested with trypsin and then various amounts of SDS were added prior to MALDI mass spectrometry. Evaluation of the data was made by calculating the amino acid sequence coverage within each analysis. It was found that addition of 0.1-0.3% w/v SDS prior to MALDI analysis results in an increase in the number of tryptic peptides detected thereby improving the total sequence coverage of the analysis. The use of SDS at concentrations near its critical micelle concentration can improve sequence coverage from MALDI peptide mass fingerprinting analyses allowing for increased confidence in protein identification or additional opportunities to identify putative regions of posttranslational modification.  相似文献   

5.
A database search using peptide mass fingerprints obtained by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry leads to protein identification with incomplete sequence coverage, because certain peptides are preferentially desorbed/ionized and some are not detected at all. We show that certain tryptic peptides mainly with C-terminal arginine not detected before derivatization become detectable upon dansylation. Others, mainly with C-terminal lysine, are suppressed. An increase in protein sequence coverage and protein identification score by combined data from underivatized and dansylated peptides in database search is demonstrated using human amnion proteins (human serum albumin precursor, calmodulin, collagen alpha 2(VI) chain precursor, galectin-3) separated by two-dimensional gel electrophoresis as well as femtomole amounts of BSA in solution.  相似文献   

6.
Protein identifications by peptide mass fingerprint analyses with Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) were performed using microelectrospray ionization coupled to nano liquid chromatography (NanoLC), as well as using matrix-assisted laser desorption/ionization (MALDI). Tryptic digests of bovine serum albumin (BSA), diluted down to femtomole quantities, have been desalted by fast NanoLC under isocratic elution conditions as the high resolving power of FT-ICR MS enables peptides to be separated during the mass analysis stage of the experiment. The high mass accuracy achieved with FT-ICR MS (a few ppm with external calibration) facilitated unambiguous protein identification from protein database searches, even when only a few tryptic peptides of a protein were detected. Statistical confidence in the database search results was further improved by internal calibration due to increased mass accuracy. Matrix-assisted laser desorption/ionization and micro electrospray ionization (ESI) FT-ICR showed good mass accuracies in the low femtomole range, yet a better sensitivity was observed with MALDI. However, in higher femtomole ranges slightly lower mass accuracies were observed with MALDI FT-ICR than with microESI FT-ICR due to scan-to-scan variations of the ion population in the ICR cell. Database search results and protein sequence coverage results from NanoLC FT-ICR MS and MALDI FT-ICR MS, as well as the effect of mass accuracy on protein identification for the peptide mass fingerprint analysis are evaluated.  相似文献   

7.
This study presents matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOFMS) as a powerful tool to analyze and characterize oligonucleotides covalently linked to a solid support during their synthesis. The analysis of the fragment ions generated either in negative or positive mode allows direct and easy access to the nucleotide sequence and identification of the internucleosidic linkage. The mechanisms of the fragmentation of the solid-supported oligonucleotides induced by MALDI-TOFMS are discussed. Copyright 2000 John Wiley & Sons, Ltd.  相似文献   

8.
High-sensitivity, high-throughput analysis of proteins for proteomics studies is usually performed by polyacrylamide gel electrophoresis in combination with mass spectrometry. However, the quality of the data obtained depends on the in-gel digestion procedure employed. This work describes an improvement in the in-gel digestion efficiency for matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOFMS) analysis. A dramatic improvement in the coverage of tryptic peptides was observed when n-octyl glucoside was added to the buffer. Whole cell extracted proteins from S. cerevisiae were separated by two-dimensional gel electrophoresis and stained with silver. Protein spots were identified using our improved in-gel digestion method and MALDI-TOFMS. In addition, the mass spectra obtained by using the matrix alpha-cyano-4-hydroxycinnamic acid (CHCA) were compared with those obtained using 2,5-dihydroxybenzoic acid (DHB). The DHB matrix usually gave more peaks, which led to higher sequence coverage and, consequently, to higher confidence in protein identification. This improved in-gel digestion protocol is simple and useful for protein identification by MALDI-TOFMS.  相似文献   

9.
High-sensitivity, rapid identification of proteins in proteomic studies normally uses a combination of one- or two-dimensional electrophoresis together with mass spectrometry. The simplicity and sensitivity of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOFMS) have increased its application in recent years. The most common method of 'peptide fingerprinting' often may not provide robust identification. Normally additional sequence information by post-source decay (PSD) MALDI-TOFMS provides additional constraints for database searches to achieve highly confident results. Here we describe a derivatization procedure to facilitate the acquisition of such sequence information. Peptide digests from a skin-expressed protein were modified with 4-sulfophenyl isothiocyanate. The resulting peptides carry a fixed negative charge at the N-terminal end and the resulting PSD spectrum is dominated by C-terminal y-type ions. The sequence information in most cases can be obtained manually or with simple programming tools. Methods of optimizing the procedure and increasing the sensitivity are discussed.  相似文献   

10.
Protein identification is a critical step in proteomics, and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOFMS) plays an important role in that identification. Polytetrafluoroethylene (Teflon) was tested as a new MALDI sample support to improve protein identification. The tryptic peptides obtained from a model protein were bound to the surface of a modified MALDI sample holder via the hydrophobic interactions that occur between the Teflon surface and the peptide ion-pairs, and the affinity of alpha-cyano-4-hydroxycinnamic acid for the peptides. During that surface-binding step, the peptide mixture was also desalted and concentrated. A greater number of matched peptides and a larger sequence coverage were obtained for the proteins when Teflon was used as the sample support compared with conventional sample preparation methods and a stainless-steel surface. In addition, the characterization of a small amount of protein was improved with Teflon. Nine silver-stained protein spots obtained from 2-D gel of a human cerebrospinal fluid (CSF) proteome were identified by this method. Among the nine protein spots, peptide 6:c3c fragment and procollagen c-proteinase enhancer were not annotated in any published 2-D map of human CSF. A Teflon MALDI sample support is a low-cost, simple, and effective method that can be used to improve the quality of the MALDI mass spectrum of a complex tryptic peptide mixture, and to achieve a higher level of reliability and success in protein identification.  相似文献   

11.
Various types of ionization of organotellurium compounds in mass-spectrometric study are considered, with diphenyl telluroxide as example. The mass spectra of diphenyl telluroxide are presented. The possibility of applying surface-activated and matrix-assisted laser desorption/ionization mass spectrometry to organotellurium compounds is examined.  相似文献   

12.
Recent advances in the field of cancer biology have accelerated the discovery and development of novel biopharmaceuticals. At the forefront of these drug development efforts are high-throughput screening, compressed timelines, and limited sample quantities, all characteristic of the discovery space. To meet program targets, large numbers of protein variants must be produced, screened, and characterized, presenting a daunting analytical challenge. Additionally, the higher-order structure is paramount for protein function and must be monitored as a critical quality attribute. Matrix-assisted laser desorption/ionization mass spectrometry has been utilized as an ultra-fast, automatable, sample-sparing analytical tool for biomolecules. Our group has published applications integrating hydrogen-deuterium exchange mass spectrometry with matrix-assisted laser desorption/ionization mass spectrometry for the rapid conformational characterization of small proteins, the current work expands this application to monoclonal and bi-specific antibodies. This study demonstrates the ability of the methodology, matrix-assisted laser desorption/ionization hydrogen-deuterium exchange mass spectrometry, to detect conformational differences between bi-specific antibodies from different expression hosts. These conformational differences were validated by orthogonal techniques including circular dichroism, nuclear magnetic resonance, and size-exclusion chromatography hydrogen-deuterium exchange mass spectrometry. This work demonstrates the utility of applying the developed methodology as a rapid conformational screening tool to triage samples for further analytical characterization.  相似文献   

13.
We demonstrate that magnetic mesocellular carbon foams (Mag-MCF-C) can be effectively used for enrichment and desalting of protein digests or peptides in matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS). The large mesocellular pores and surface area of Mag-MCF-C are likely to mainly contribute to high efficiency in enrichment and desalting of protein digests. The magnetic property of Mag-MCF-C enabled easy and simple enrichment and desalting process comprising adsorption, washing, and separation steps by using an external magnet. Following elution from Mag-MCF-C by using a matrix solution (CHCA in 70% ACN/0.1% TFA), the peptides were subjected to MALDI-MS analysis. As a result, MALDI mass spectra of peptides or tryptic protein digests were distinct even at a peptide concentration as low as 50 pM. The use of Mag-MCF-C resulted in significantly improved sequence coverage for protein identification when compared to other conventional methods. Mag-MCF-C will find applications in mass spectrometric analysis of low abundance peptides or protein digests with high sensitivity.  相似文献   

14.
The suitability of atmospheric pressure desorption/ionization on silicon mass spectrometry (AP-DIOS-MS) and matrix-assisted laser desorption ionization mass spectrometry (AP-MALDI-MS) for the identification of amphetamines and fentanyls in forensic samples was studied. With both ionization techniques, the mass spectra recorded showed abundant protonated molecules, and the background did not disturb the analysis. The use of tandem mass spectrometry (MS/MS) allowed unambiguous identification of the amphetamines and fentanyls. AP-DIOS-MS/MS and AP-MALDI-MS/MS were also successfully applied to the identification of authentic compounds from drug seizures. Common diluents and tablet materials did not disturb the analysis and compounds were unequivocally identified. The limits of detection (LODs) for amphetamines and fentanyls with AP-DIOS-MS/MS were 1-3 pmol, indicating excellent sensitivity of the method. The LODs with AP-MALDI-MS/MS were about 5-10 times higher.  相似文献   

15.
Peptide sequencing by mass spectrometry is gaining increasing importance for peptide chemistry and proteomics. However, available tools for interpreting matrix-assisted laser desorption/ionization post-source decay (MALDI-PSD) mass spectra depend on databases, and identify peptides by matching experimental data with spectra calculated from database sequences. This severely obstructs the identification of proteins and peptides not listed in databases or of variations, e.g. mutated proteins. The development of a new computer program for database-independent peptide sequencing by MALDI-PSD mass spectrometry is reported here. This computer program was validated by the determination of the correct sequences for various peptides including sequences listed in the sequence databases, but also for peptides that deviate from database sequences or are completely artificial. This strategy should substantially facilitate the identification of novel or variant peptides and proteins, and increase the power of MALDI-PSD analyses in proteomics.  相似文献   

16.
In this study various methods of sample preparation and matrices were investigated to determine optimum collection and analysis criteria for fungal analysis by matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS). Intact spores and/or hyphae of Aspergillus niger, Rhizopus oryzae, Trichoderma reesei and Phanerochaete chrysosporium were analyzed by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOFMS). The fungal samples were applied to the MALDI sample target as untreated, sonicated, or acid/heat treated samples, or blotted directly from the fungal culture with double-stick tape. Ferulic acid or sinapinic acid matrix solution was layered over the dried samples and analyzed by MALDI-MS. Statistical analysis showed that simply using double-stick tape to collect and transfer to a MALDI sample plate typically worked as well as the other preparation methods, and required the least sample handling.  相似文献   

17.
Daniel JM  Ehala S  Friess SD  Zenobi R 《The Analyst》2004,129(7):574-578
A new technique is presented for the coupling of atmospheric pressure matrix-assisted laser desorption/ionization (AP-MALDI) mass spectrometry with liquid delivery systems. Mass measurements of polymers and peptides are demonstrated using a co-dissolved matrix, e.g. alpha-cyano-4-hydroxycinnamic acid (HCCA). Improvements in terms of sensitivity are achieved by optimizing the shape und control of the exit capillary and by using a laser (355 nm) at a 1 kHz repetition rate. Two calibration experiments promise a good applicability of the presented coupling method for quantitative measurements. The limit of detection achieved so far is 500 nM for peptides in methanol solution containing 25 mM HCCA.  相似文献   

18.
The desorption/ionization behaviour of polycyclic aromatic hydrocarbons (PAHs) in matrix-assisted laser desorption/ionization (MALDI) and laser desorption (LD) mass spectrometry was studied by the solvent-free sample preparation method. As the understanding of the desorption/ionization mechanism in MALDI is normally hampered by the different ionization and desorption efficiencies of the analytes, this work was focused on the analyses of a homologous series of four hexabenzocoronenes (HBCs) possessing virtually the same ionization efficiency: HBC parent, hexamethyl-hexabenzocoronene (HBC-C1), hexapropyl-hexabenzocoronene (HBC-C3) and hexakis(dodecyl)-hexabenzocoronene (HBC-C12). The different signal intensities obtained in their mass spectra can be related to differences in their desorption efficiencies, which are attributed to the different strengths of the intermolecular interactions between unsubstituted and alkylated HBCs in the solid state. The influence of the aromatic structure of PAHs on their photoionization/desorption probability was investigated. As a model system, an equimolar mixture composed of HBC-C12 and hexakis(dodecyl)-hexaphenylbenzene (HPB-C12) was chosen. The aromatic structures of both molecules and thus their absorption coefficients at the laser wavelength differ substantially and have a huge influence on their photoionization efficiency. The combined effect of laser light absorption and intermolecular interactions on the desorption/ionization behaviour of giant PAHs was further studied by using an equimolar mixture composed of a larger PAH (C(222)H(42)) and its dendritic precursor (C(222)H(150)). This mixture shows the opposite behaviour to that of the former example, because the balance between desorption and ionization efficiency has changed significantly. The present investigation should be of interest for providing a better understanding of MALDI and LD spectra obtained from natural PAH-containing samples, such as heavy oils, asphaltenes or pitches, for which our artificial mixtures represent suitable model systems.  相似文献   

19.
Robust, specific, and rapid identification of toxic strains of bacteria and viruses, to guide the mitigation of their adverse health effects and optimum implementation of other response actions, remains a major analytical challenge. This need has driven the development of methods for classification of microorganisms using mass spectrometry, particularly matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS), that allows high-throughput analyses with minimum sample preparation. We describe a novel approach to cell typing based on pattern recognition of MALDI mass spectra, which involves charge-state deconvolution in conjunction with a new correlation analysis procedure. The method is applicable to both prokaryotic and eukaryotic cells. Charge-state deconvolution improves the quantitative reproducibility of spectra because multiply charged ions resulting from the same biomarker attaching a different number of protons are recognized and their abundances are combined. This allows a clearer distinction of bacterial strains or of cancerous and normal liver cells. Improved class distinction provided by charge-state deconvolution was demonstrated by cluster spacing on canonical variate score charts and by correlation analyses. Deconvolution may enhance detection of early disease state or therapy progress markers in various tissues analyzed by MALDI-MS.  相似文献   

20.
Mass determination by mass spectrometric methods (electrospray ionization mass spectrometry (ESI-MS), matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOFMS)) of sodiumdodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE)-separated proteins is a well known procedure and reliable protocols are available. In our efforts to use the established methods to determine the molecular mass of the disulfide bridged, heterodimeric glycoprotein GP3 and to determine the carbohydrate content of each protein subunit we developed an in-gel chemical deglycosylation method. For this purpose we established experimental conditions that allow maximum extraction of the high molecular mass protein subunits and developed a routine method to apply the HF-pyridine deglycosylation protocol to proteins isolated from polyacrylamide gel pieces. The novel protocol and extraction procedure described can be used to analyze O-glycosylated proteins up to 150 kDa after SDS-PAGE separation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号