首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
The identification of most individual members of the complex mixtures of carboxylic acids found in petroleum ('naphthenic acids') has eluded chemists for over a century; they remain unresolved by conventional gas chromatographic methods. Recently, however, we successfully used two-dimensional comprehensive gas chromatography/mass spectrometry to identify numerous individual diamondoid acids in the naphthenic acids of oil sands process water (OSPW). We have now applied the same methods to a study of a mixture of commercially available naphthenic acids originally refined from petroleum. The results confirm that OSPW and refined petroleum contain very different distributions of acids, as noted previously, although some of the diamondoid acids recently identified in OSPW were detectable in both. Rather, two-dimensional comprehensive gas chromatography/time-of-flight mass spectrometry (GCxGC/ToF-MS) of the methyl esters of the petroleum acids and of numerous acids synthesised for comparison showed that the former comprised mainly C(8-18) straight-chain, methyl-branched, acyclic isoprenoid, cyclohexyl and isomeric octahydropentalene, perhydroindane and perhydronaphthalene (decalin) acids. Some of the latter bicyclic acids occurred as both the non-alkyl-substituted isomers and the bicyclic ethanoic and propanoic acids. Also present in minor quantities was a range of phenyl carboxylic and substituted phenyl alkanoic acids, and traces of non-acids, including trimethylnaphthalenes, again identified by comparison with the synthesised compounds. These results represent some of the first identifications of multiple individual naphthenic acids in commercial mixtures originating from petroleum and provide a basis for future studies of the petroleum geochemistry, toxicities and environmental impacts of the acids. Furthermore, characterisation of the acids will be important for improving the understanding of the role of naphthenic acids in petroleum engineering, particularly for oil pipeline deposition problems.  相似文献   

2.
The oil sands regions of Northern Alberta, Canada, contain an estimated 1.7 trillion barrels of oil in the form of bitumen, representing the second largest deposit of crude oil in the world. A rapidly expanding industry extracts surface-mined bitumen using alkaline hot water, resulting in large volumes of oil sands process water (OSPW) that must be contained on site due to toxicity. The toxicity has largely been attributed to naphthenic acids (NAs), a complex mixture of naturally occurring aliphatic and (poly-)alicyclic carboxylic acids. Research has increasingly focused on the environmental fate and remediation of OSPW NAs, but an understanding of these processes necessitates an analytical method that can accurately characterize and quantify NA mixtures. Here we report results of an interlaboratory comparison for the analysis of pure commercial NAs and environmental OSPW NAs using direct injection electrospray ionization mass spectrometry (ESI-MS) and high-pressure liquid chromatography/high-resolution mass spectrometry (HPLC/HRMS). Both methods provided very similar characterization of pure commercial NA mixture; however, the m/z selectivity of HPLC/HRMS was essential to prevent substantial false-positive detections and misclassifications in OSPW NA mixtures. For a range of concentrations encompassing those found in OSPW (10-100 mg/L), both methods produced linear response, although concentrations of commercial NAs above 50 mg/L resulted in slight non-linearity by HPLC/HRMS. A three-fold lower response factor for total OSPW NAs by HPLC/HRMS was largely attributable to other organic compounds in the OSPW, including hydroxylated NAs, which may explain the substantial misclassification by ESI-MS. For the quantitative analysis of unknown OSPW samples, both methods yielded total NA concentrations that correlated with results from Fourier transform infrared (FTIR), but the coefficients of determination were not high. Quantification by either MS method should therefore be considered semi-quantitative at best, albeit either method has substantial value in environmental fate experiments where relative concentration changes are the desired endpoints rather than absolute concentrations.  相似文献   

3.
Mass spectrometry is a common tool for studying the fate of complex organic compound mixtures in oil sands processed water (OSPW), but a comparison of low‐, high‐ (~10 000), and ultrahigh‐resolution (~400 000) instrumentation for this purpose has not previously been made. High‐resolution quadrupole time‐of‐flight mass spectrometry (QTOF MS) and ultrahigh‐resolution Fourier transform ion cyclotron resonance mass spectrometry (FT‐ICR MS), with negative‐ion electrospray ionization, provided evidence for the selective dissipation of components in OSPW. Dissipation of oil sands naphthenic acids (NAs with general formula CnH2n+zO2 where n is the number of carbon atoms, and Z is zero or a negative even number describing the number of rings) was masked (by components such as fatty acids, O3, O5, O6, O7, SO2, SO3, SO4, SO5, SO6, and NO4 species) at low resolution (1000) when using a triple quadrupole mass spectrometer. Changes observed in the relative composition of components in OSPW appear to be due primarily to the presence of plants, specifically cattails (Typha latifolia) and their associated microorganisms. The observed dissipation included a range of heteratomic species containing O2, O3, O4, and O5, present in Athabasca oil sands acid extracts. For the heteratomic O2 species, namely naphthenic acids, an interesting structural relationship suggests that low and high carbon number NAs are dissipated by the plants preferentially, with a minimum around C14/C15. Other heteratomic species containing O6, O7, SO2, SO3, SO4, SO5, SO6, and NO4 appear to be relatively recalcitrant to the cattails and were not dissipated to the same extent in planted systems. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

4.
The mechanism of hydroxyl radical initiated degradation of a typical oil sands process water (OSPW) alicyclic carboxylic acid was studied using cyclohexanoic acid (CHA) as a model compound. By use of vacuum ultraviolet irradiation (VUV, 172 nm) and ultraviolet irradiation in the presence of hydrogen peroxide UV(254 nm)/H(2)O(2), it was established that CHA undergoes degradation through a peroxyl radical. In both processes the decay of the peroxyl radical leads predominantly to the formation of 4-oxo-CHA, and minor amounts of hydroxy-CHA (detected only in UV/H(2)O(2)). In UV/H(2)O(2), additional 4-oxo-CHA may also have been formed by direct reaction of the oxyl radical with H(2)O(2). The oxyl radical can be formed during decay of the peroxyl-CHA radical or reaction of hydroxy-CHA with hydroxyl radical. Oxo- and hydroxy-CHA further degraded to various dihydroxy-CHAs. Scission of the cyclohexane ring was also observed, on the basis of the observation of acyclic byproducts including heptadioic acid and various short-chain carboxylic acids. Overall, the hydroxyl radical induced degradation of CHA proceeded through several steps, involving more than one hydroxyl radical reaction, thus efficiency of the UV/H(2)O(2) reaction will depend on the rate of generation of hydroxyl radical throughout the process. In real applications to OSPW, concentrations of H(2)O(2) will need to be carefully optimized and the environmental fate and effects of the various degradation products of naphthenic acids considered.  相似文献   

5.
Naphthenic acids are naturally occurring organics in produced waters from oil recovery operations. In principle, these contaminants can be removed using micellar-enhanced ultrafiltration (MEUF), which is an effective technique for the removal of organic contaminants from water streams. In this work, we show that the amphiphilic nature of the naphthenic acids contributed to decreasing the critical micelle concentration (CMC) of cetylpyridinium chloride (CPC), a widely used surfactant in MEUF. This reduction in CMC allowed a decrease in the CPC dosage required to attain certain removal of the organics, and hence, improved the performance of traditional MEUF as a result of reducing back contamination and potential fouling of the membrane. The effect of CPC feed concentration, and the concentration and carbon number of the naphthenic acids on permeate flux, recovery ratio and percent rejection of CPC and naphthenic acids were explored over a range of trans-membrane pressure. The MEUF setup employed hydrophilic polyacrylonitrile (PAN) hollow fiber membrane with 13 kDa MWCO, since it allowed for high permeate flux and contaminant rejection.  相似文献   

6.
Naphthenic acids are found in wastewaters from petroleum refineries and oil sands extraction plants. Currently, the concentrations of these toxic carboxylic acids are determined by extracting them into methylene chloride and measuring the absorption of the carboxyl group by Fourier-transform infrared (FTIR) spectroscopy. An improved HPLC method, that is simpler and faster than the FTIR method, was used to detect the 2-nitrophenylhydrazides of the naphthenic acids at concentrations as low as 5 mg l(-1). Analyses of 58 oil sands water samples showed that the naphthenic acids concentrations determined by FTIR were on average 11% higher than those determined by HPLC.  相似文献   

7.
In this work, a reversed‐phase ultra‐HPLC (UHPLC) ultrahigh resolution MS (UHRMS) method was evaluated for the comprehensive profiling of NAs containing two O atoms in each molecule (O2NAs; general formula CnH2n + zO2, where n is the number of carbon atoms and z represents hydrogen deficiency). Using a polar cyanopropyl‐bonded phase column and negative‐ion electrospray ionization mass spectrometric detection at 120,000 FWHM (m/z 400), 187 and 226 O2NA species were found in two naphthenic acid technical mixtures, and 424 and 198 species with molecular formulas corresponding to O2NAs were found in two oil sands process‐affected water samples (one from a surface mining operation and the other from a steam‐assisted gravity drainage operation), respectively. To our knowledge, these are the highest numbers of molecular compositions of O2NAs that have been profiled thus far in environmental samples. Assignments were based on accurate mass measurements (≤3 ppm) combined with rational molecular formula generation, correlation of chromatographic behavior of O2NA homologues with their elemental compositions, and confirmation with carboxyl group‐specific chemical derivatization using 3‐nitrophenylhydrazine. Application of this UHPLC–UHRMS method to the quantitation of O2NAs in the surface mining operation‐derived water sample showed excellent linearity (R2 = 0.9999) with external calibration, a linear range of 256‐fold in concentration, and quantitation accuracies of 64.9 and 69.4% at two “standard substance” spiking levels.  相似文献   

8.
The oils sands industry of Canada produces large volumes of process water (OSPW) which is stored in large lagoons. The OSPW contains complex mixtures of somewhat toxic, water-soluble, acid-extractable organic matter sometimes called 'naphthenic acids' (NA). Concerns have been raised over the possible environmental impacts of leakage of OSPW and a need has therefore arisen for better characterisation of the NA. Recently, we reported the first identification of numerous individual tricyclic NA in OSPW by comprehensive two-dimensional gas chromatography/time-of-flight mass spectrometry (GCxGC/ToF-MS) of the methyl esters. The acids were diamondoid adamantane acids, resulting, it was proposed, from biotransformation of the corresponding alkyladamantane hydrocarbons, which is a known process. Biotransformation of higher alkylated diamondoid hydrocarbons was, until now, unknown but here we describe the identification of numerous pentacyclic NA as diamantane and alkyldiamantane acids, using the same methods. Further, we suggest tentative structures for some of the tetracyclic acids formed, we propose, by ring-opening of alkyldiamantanes. We suggest that this is further evidence that some of the acid-extractable organic matter in the OSPW originates from extensive biodegradation of the oil, whether in-reservoir or environmental, although other oxidative routes (e.g. processing) may also be possible. The results may be important for helping to better focus reclamation and remediation strategies for NA and for facilitating the identification of the sources of NA in contaminated environmental samples.  相似文献   

9.
Naphthenic acids (general formula C(n)H(2n+Z)O(2)) are water-soluble, toxic compounds found in petroleum and bitumen. Some of the current methods for detecting these acids in waters depend on measuring the presence of the carboxylic acid functional group, and therefore many of these methods also detect naturally occurring carboxylic acids that are not naphthenic acids. We report a procedure that includes liquid-liquid extraction, cleanup, and derivatization to form t-butyldimethylsilyl esters prior to gas chromatography-mass spectrometry (GC-MS) analysis. Using low- and high-resolution MS to detect the ion C(15)H(27)O(2)Si(+) (nominal m/z=267) is an excellent indicator of the presence of naphthenic acids at concentrations > or =10microgL(-1).  相似文献   

10.
Naphthenic acids, C(n)H(2n+Z)O(2), are a complex mixture of alkyl-substituted acyclic and cycle-aliphatic carboxylic acids. The content of naphthenic acids and their derivatives in crude oils is very small, which hinders their extraction from matrixes of wide and varied composition. In this work, liquid-liquid extraction, followed by solid phase extraction with an ion exchange resin (Amberlyst A-27) and ultrasound desorption were used to isolate the acid fraction from heavy gas oil of Marlim petroleum (Campos, Rio de Janeiro, Brazil). The analysis was accomplished through gas chromatography coupled to mass spectrometry with electron impact ionization, after derivatization with N-methyl-N-(tert-butyldimethylsilyl)trifluoracetamide (MTBDMSTFA). The results indicate the presence of carboxylic acids belonging to families of alicyclic and naphthenic compounds which contain up to four rings in the molecule.  相似文献   

11.
气相色谱/化学电离-质谱法检测石油中的环烷酸   总被引:8,自引:0,他引:8  
采用柱色谱和阴离子交换树脂法分离出原油200~420 ℃馏分中的羧酸,通过红外光谱仪检验分离效果及分离出的羧酸的类型。采用气相色谱及以异丁烷为反应气的化学电离(CI)质谱法分析分离出的羧酸。在对其结构进行推断和归类中,以纯脂肪酸、环烷酸以及分离出的石油酸的CI质谱数据为基础,结合环烷酸z系列通式CnH2n+zO2,分别得到了不同碳数的脂肪酸及一环、二环……六环环烷酸的分析结果。结果表明,含酸原油中的羧酸主要是环烷酸,相对分子质量分布为170~510,碳数分布为C10~C35,其中双环、三环环烷酸含量较高。  相似文献   

12.
Naphthenic acids (NAs) are concentrated in oil sand process water (OSPW) as a result of caustic oil sands extraction processes. There is considerable interest in methods for treatment of NAs in OSPW. Earlier work has shown that the combination of ultraviolet (UV) and microwave treatments in the laboratory was effective in reducing the concentration of classical NAs. Here we apply Fourier transform ion cyclotron resonance mass spectrometry (FT‐ICR MS) to further characterize NAs treated with (a) UV (254 nm) in the presence of TiO2 catalyst; and/or (b) microwave irradiation (2.45 GHz). FT‐ICR MS was used to characterize the NA fraction before and after treatment. Acidic oxygen‐containing classes were most abundant in all samples whereas other heteroatomic classes were least abundant or not present in some samples. For example, the SO2‐containing species were absent in UV‐ or combined UV‐ and microwave‐treated samples. The O2 class was dominant in all samples, indicative of NAs. However, samples treated with UV and microwave radiation have a lower relative abundance of other heteroatomic classes. We observed O2, S1O2, O3, S1O3, O4, O5, and O6 classes, whereas the species with relatively high On content, namely, the O3, O5, and O6 classes, were present only in UV‐ and microwave‐treated samples. The relatively high On content is consistent with oxidation of the parent acids in treated samples. There may thus be potential implications for environmental forensics. For example, the monitoring of the ratio of SO2:O2 or tracking the relative abundances of O2, O3, O4, O5, and O6 classes may provide insights for distinguishing naturally derived oil sands components from those that are process‐related in aquatic environments. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

13.
There is interest in using mature fine tailings (MFT) in reclamation strategies of oil sands mining operations. However, simulated runoff from different dried MFT treatments is known to have elevated levels of salts, toxic ions, and naphthenic acids, and alkaline pH and it is phytotoxic to the emergent macrophyte, common reed (Phragmites australis). Fourier transform ion cyclotron resonance mass spectrometry (FT‐ICR MS) of the acidic species in the runoff confirmed that the distribution of oil sands naphthenic acids and associated oil sand acids was dependent on the MFT treatment. Furthermore, FT‐ICR MS studies of the acidic species in hydroponic systems revealed that there was no plant‐mediated change in the electrospray ionization mass spectra of the runoff. Oo‐containing species were prevalent (>90%), OoSs were predominant (<10% relative abundance), and OoNn were least abundant in all runoff water samples. OoSs species were predominant in all the samples investigated. The heteroatomic classes present in runoff water at greater than 1% relative abundance include: O2N1, O3N1, O2, O2S1 O3, O3S1, O4, O4S1, O5, O5S1, O6, O6S1, O7, O7S1, O8 and O8S1. Assuming the same response factor for all Oo species, the O4 class, presumably dicarboxylic acids, was generally more prevalent than the O2 class in all samples. The O2 class is indicative of classical naphthenic acids. However, dicarboxylic acids will form negative ions more readily than the monocarboxylic acids as there are two acidic hydrogens available for formation of these species. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

14.
The combination of a laser with a Fourier transform ion cyclotron resonance mass spectrometer (FTICRMS) enables a variety of MS experiments to be conducted. The laser can be used either as an intense photonic source for the photoionization of neutral species introduced in a variety of ways into the FTICR cell, or it can be made to directly interact with a solid, generating gas-phase ions. Depending on the experimental conditions used, various laser-matter interactions can occur. When high laser energy (also referred to as power density or irradiance) is used, laser ablation (LA) processes lead to the release of species into the gas phase, a significant fraction of which are ionic. The number of ions decreases with the irradiance. For low irradiance values, the so-called laser desorption (LD) regime applies, where the expelled species are mainly neutrals. LA–FTICRMS and LD–FTICRMS can be used to study a wide range of materials, including mineral, organic, hybrid and biological compounds (although matrix-assisted laser desorption ionization, MALDI, which is not reviewed in this paper, is more commonly applied to biological compounds). This paper will review a selection of methodological developments and applications in the field of laser ionization FTICRMS, LD–FTICRMS, and LA–FTICRMS for the analysis of organics and inorganics in complex mixtures, emphasizing insoluble materials. Specifically, silicate- and carbon-based complex materials as well as organic compounds will be examined due to their relevance to natural environmental and anthropogenic matrices.  相似文献   

15.
Naphthenic acids are a complex mixture of carboxylic acids with the general formula CnH(2n+Z)O2 and they are natural, toxic components of crude oils. GC-MS analyses of tert-butyldimethylsilyl esters of naphthenic acids are used to estimate component distribution within naphthenic acids mixtures. Our evaluations of the GC-MS method showed that ions from column bleed erroneously appear as C14 Z = -4 acids and that correcting for heavy isotopes of C and Si do not significantly affect ion distribution plots. Overall, the GC-MS method appears to overestimate the relative proportion of low-molecular-mass acids.  相似文献   

16.
The sorption characteristics of naphthenic acids (NAs) in their anion form with β-cyclodextrin (β-CD) based polyurethanes, as sorbents, from aqueous solutions that simulate the conditions of oil sands process water (OSPW) are presented. The copolymer sorbents were synthesized at various β-CD:diisocyanate monomer mole ratios (e.g., 1:1, 1:2, and 1:3) with diisocyanates of variable molecular size and degree of unsaturation. The equilibrium sorption properties of the copolymer sorbents were characterized using sorption isotherms in aqueous solution at pH 9.00 with electrospray ionization mass spectrometry to monitor the equilibrium unbound fraction of anionic NAs in the aqueous phase. The copolymer sorbents were characterized in the solid state using (13)C CP-MAS NMR spectroscopy, IR spectroscopy and elemental analysis. The sorption results of the copolymer sorbents with anion forms of NAs in solution were compared with a commercially available carbonaceous standard: granular activated carbon (GAC). The monolayer sorption capacities of the sorbents (Q(m)) were obtained from either the Langmuir or the Sips isotherm model used to characterize the sorption characteristics of each copolymer sorbent. The estimated sorption capacity for GAC was 142 mg NAs per g sorbent whereas the polymeric materials ranged from 0-75 mg NAs per g sorbent over the experimental conditions investigated. In general, significant differences in the sorption capacities between GAC and the copolymer sorbents were related to the differences in the accessible surface areas and pore structure characteristics of the sorbents. The Sips parameter (K(eq)) for GAC and the copolymer materials reveal differences in the relative binding affinity of NAs to the sorbent framework in accordance with the synthetic ratios and the value of Q(m). The diisocyanate linker plays a secondary role in the sorption mechanism, whereas the β-CD macrocycle in the copolymer framework is the main sorption site for NAs because of the formation of inclusion complexes with β-CD.  相似文献   

17.
Naphthenic acids present formidable challenges for the petroleum industry and are a growing concern in the aquatic environment. For example, these acids are responsible for corrosion of refinery equipment, leading to the incurrence of additional costs to the consumer, and are toxic to aquatic wildlife, making disposal and remediation of contaminated waters and sediments a significant problem. The detection and characterization of naphthenic acids is therefore of considerable importance. Fourier transform ion cyclotron resonance mass spectrometry is presented as a technique with inherently ultra-high mass accuracy and resolution, affording unequivocal assignments. The suitability of the technique for environmental applications is demonstrated to characterize two different commercial mixtures of naphthenic acids and one oilsands tailings pond sample.  相似文献   

18.
Nano-electrospray ionization (ESI) Fourier transform ion cyclotron resonance mass spectrometry (FTICRMS) was applied to identify the molecular species of phosphatidylethanolamine of Caenorhabditis elegans, which has a high concentration of phospholipids with a fatty acyl chain having an odd number of carbon atoms. The molecular species of diacyl phosphatidylethanolamine with one fatty acyl chain having an odd number of carbon atoms and one fatty acyl chain having an even number of carbon atoms was identified separately from alkyl-acyl phosphatidylethanolamine with an alkyl chain having an even number of carbon atoms and a fatty acyl chain having an even number of carbon atoms. Furthermore, nano-ESI-FTICRMS was applied to the direct identification of oxidized phosphatidylcholine from soybean. The mass peaks of individual molecular species of oxidative phosphatidylcholine, such as 34:3 diacyl phosphatidylcholine with peroxide (+2O) (m/z 788.544) or 34:2 diacyl phosphatidylcholine with peroxide (+2O) (m/z 790.560), can be separated from the peaks of the molecular species of the non-oxidative phospholipids. This suggests that the mass peaks with a difference of less than 0.1 mass units in their molecular weight can be separated and that their individual exact molecular compositions can be obtained by the FTICRMS analysis. The high resolution and high accuracy of FTICRMS are very effective in the analysis of molecular species of phospholipids and their derivatives.  相似文献   

19.
Naphthenic acids (NAs) are partially uncharacterised complex mixtures of carboxylic acids, resulting from the microbial oxidation of petroleum hydrocarbons. They are associated with the fouling of pipelines and process equipment in oil production and with corrosion in oil refineries. As by-products of the rapidly expanding oil (tar) sands industries, NAs are also pollutants and have proved to be toxic to a range of organisms. They also have important beneficial uses as fungicides, tyre additives and, paradoxically, also in the manufacture of corrosion inhibitors. These features make the characterisation of NAs an important goal for analytical chemists. Here we describe the synthesis of amide derivatives of NAs for characterisation by liquid chromatography/electrospray ionisation multistage mass spectrometry (LC/ESI-MS(n)). The method was applied to commercially available carboxylic acids, novel synthetic NAs, commercial NAs refined from crude oils, crude oil NAs and Athabasca oil sands NAs. In addition to confirming the number of alicyclic rings and length of alkyl side chain substituents (confirming information from existing methods), the MS(n) results provided further structural information. Most important of these was the finding that bi- to polycyclic acids containing ethanoate side chains, in addition to alkyl substituents, were widespread amongst the oil and oil sands NAs. The latter NAs are known end members of the beta-oxidation of NAs with even carbon number alkanoate chains. Since such NA mixtures are toxic, they should be targets for bioremediation. Bioremediation of NAs can also be monitored better by application of the methods described herein.  相似文献   

20.
Naphthenic acids (NAs) have been implicated as some of the most toxic substances in oil sands leachates and identified as priority substances impacting on aquatic environments. As a group of compounds, NAs are not well characterized and comprise a large group of saturated aliphatic and alicyclic carboxylic acids found in hydrocarbon deposits (petroleum, oil sands bitumen, and crude oils). Described is an analytical method using negative-ion electrospray ionization mass spectrometry (ES/MS) of extracts. Preconcentration was achieved by using a solid-phase extraction procedure utilizing a crosslinked polystyrene-based polymer with acetonitrile elution. Recovery of the Fluka Chemicals NA mixture was highly pH-dependent, with 100% recovery at pH 3.0, but only 66 and 51% recoveries at pHs 7 and 9, respectively. The dissolved phase of the NA was very dependent on sample pH. It is thus critical to measure the pH and determine the appropriate mass profiles to identify NAs in natural waters. The ES/MS analytical procedure proved to be a fast and sensitive method for the recovery and detection of NAs in natural waters, with a detection limit of 0.01 mg/L.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号