首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
《Composite Interfaces》2013,20(6):429-445
During a fiber pull-out test, it is desirable to analyze the stress profiles along the embedded fiber directly within the same time scale as the normal pull-out tests. In the present study, the axial tensile stress profiles of the fiber in a model composite are measured during the single-fiber pull-out tests by using stress birefringence of the fiber. It is concluded from the analysis of the measured stress profiles that an effective radius of matrix, i.e. a radius defining the region of the matrix where the major deformation takes place, is not constant but is an increasing function of the interfacial shear stress. By incorporating the variable values of the effective radius of matrix into the shear-lag model, the axial tensile and the interfacial shear stress profiles are calculated. To accurately estimate the interfacial shear strength, the stress distribution along the embedded fiber and the variability of the effective radius of matrix should be taken into account instead of calculating the interfacial shear strength simply from the pull-out stress and the embedded length.  相似文献   

2.
《Composite Interfaces》2013,20(7-9):699-713
The kenaf fiber/soy protein resin interface was characterized. The soy protein isolate (SPI) was modified using a polycarboxylic acid, Phytagel® (PH), to make an interpenetrating network-like (IPN-like structure) structure of the resin. The effects of different PH contents on the interfacial properties were characterized using single fiber composite (SFC) tests and optical microscopy. Kenaf fiber strength was characterized using tensile tests. Kenaf fibers were extracted from nonwoven mats. The length of each kenaf fiber was extended by gluing it to long polyethylene filaments on both sides. After drying the glue, dog-bone shaped SFC specimens were prepared using pure and modified SPI resins. The dried SFC specimens were taken out from the mold and hot-pressed (cured) at 120°C. The interfacial shear strength (IFSS) was calculated using the shear-lag analysis. Single fiber tensile tests at different gauge lengths were performed. The average stresses were computed by fitting the data to Weibull distribution. These values were used in the calculation of the IFSS. After the SFC tests, the specimens were observed under the optical microscope to characterize the fiber fracture modes and the region around the fiber fracture. The SFC tests showed that the IFSS is a function of the PH content which controls the resin shrinkage. It was also seen that the interfacial failure mode is also a function of the PH content. These finding were confirmed by the microbead tests in which E-glass fibers were used with the modified SPI resins.  相似文献   

3.
Dynamic tensile properties of glass-fiber polymer composites embedded with ZnO nanowhiskers are investigated by a split Hopkinson tensile bar. The stress-strain curves, ultimate strength, failure strain and elastic modulus are obtained and the failure mechanism of the composites is investigated by the macroscopic and microscopic observation of fractured specimens. The strain rate effect on the mechanical behavior is discussed and a constitutive model is derived by simulating the experimental data. The experimental results show that the materials have an obvious non-linear constitutive relation and strain rate strengthening effect. The composites with ZnO nanowhiskers under dynamic loading have various failure modes and better mechanical properties.  相似文献   

4.
韩永超  韦成华  张冉  王家伟  吕玉伟 《强激光与粒子束》2022,34(1):011011-1-011011-6
针对激光与机械载荷联合作用下碳纤维/环氧树脂增强复合材料(CFRC)层合板失效时间的预测需求,实验研究了不同激光功率密度(70~210 W/cm2)、不同预应力水平(拉伸强度的50%和70%)、不同光斑尺寸(拉伸试件宽度的70%和100%)下2 mm厚层合板的失效机理,获取了不同影响因素对断裂时间的影响规律。结果表明:预加载层合板失效机制为迎光面环氧树脂基底材料热解、纤维氧化断裂,背光面剩余结构偏脆性断裂;在预应力一定条件下,试件断裂时间与辐照激光功率密度成指数规律;预应力水平对断裂时间影响显著。  相似文献   

5.
《Composite Interfaces》2013,20(5-6):443-458
The mechanism with which the fiber-matrix interfacial strength exerts its influence on the compressive strength of fiber reinforced composites has been studied by measuring the axial compressive strength of carbon fiber/epoxy resin unidirectional composite strands having different levels of interfacial shear strength. The composite strands are used for experiments in order to investigate the compressive strength which is not affected by the delamination taking place at a weak interlayer of the laminated composites. The interfacial strength is varied by applying various degrees of liquid-phase surface treatment to the fibers. The efficiency of the compressive strength of the fibers utilized in the strength of the composite strands is estimated by measuring the compressive strength of the single carbon filaments with a micro-compression test. The compressive strength of the composite strands does not increase monotonically with increasing interfacial shear strength but showes lower values at higher interfacial shear strengths. With increasing interfacial shear strength, the suppression of the interfacial failure in the misaligned fiber region increases the compressive strength, while at higher interfacial shear strengths, the enhancement of the crack sensitivity decreases the compressive strength.  相似文献   

6.
《Composite Interfaces》2013,20(2-3):311-319
The transverse tensile properties of phenolic composites reinforced with spun-type carbon fabrics (spun C/P composites) have been investigated in order to evaluate the adherent failure behavior of composites in the transverse (90°) direction due to tension. The transverse tensile strength of the spun C/P composite is about 3.4 times higher than that of the conventional composite reinforced with filament type carbon fabrics (filament C/P composites). It is found from stress–strain curve of composites that it exhibits above 4 times higher failure strain than the filament C/P composite. However, the transverse tensile modulus of the spun C/P composite is similar to that of the filament C/P composite. The results indicate that the protruded fibers of spun yarns between the interlaminar layers in the spun C/P composite play an important role in improving the transverse tensile properties by the effects of fiber bridging. Consequently, this result suggests that use of spun yarn type carbon fabrics as reinforcement in a phenolic composite may significantly contribute to improving the interfacial properties of carbon/phenolic composites.  相似文献   

7.
A shear-lag model is applied to study the stress transfer around a broken fiber within unidirectional fiber-reinforced composites(FRC) subjected to uniaxial tensile loading along the fiber direction.The matrix damage and interfacial debonding,which are the main failure modes,are considered in the model.The maximum stress criterion with the linear damage evolution theory is used for the matrix.The slipping friction stress is considered in the interfacial debonding region using Coulomb friction theory,in whic...  相似文献   

8.
非轴向力下埋入式光纤传感器应变传递分析   总被引:2,自引:0,他引:2  
李宏男  周广东  任亮 《光学学报》2007,27(5):87-793
利用剪滞法建立了当光纤光栅传感器的轴线和基体主应力的方向成一定角度时,光纤光栅传感器的测量应变与基体结构实际应变之间的关系,进而得出了光纤光栅传感器的平均应变传递率的一般公式。采用裸光纤光栅传感器进行实验,在倾斜角度α为30.72°时,实验所得的波长变化之比分别为:0.727,0.738,0.746;理论计算所得的波长变化之比为0.739,相对误差都在2%以内。同时分析了埋设角度偏差对测量结果的影响。研究结果表明,非轴向力作用下光纤光栅传感器的应变与结构基体应变之间的传递关系与其在轴向力作用下存在明显的区别,埋设角度的偏差会给测量结果造成一定的误差。  相似文献   

9.
《Composite Interfaces》2013,20(3):289-308
Experimental and theoretical investigations have been conducted to study the dependence of fiber fragmentation behavior on matrix yielding properties. The cured Epikote 828 resins with two types of curing agents have almost similar elastic moduli, but different tensile yield strengths. The interfacial chemistry between fiber and epoxy resin is unchanged due to the same constituent of the epoxy resin. The experimental results indicate that the fragmentation behavior of the fibers embedded in the matrix is significantly different for the tested glass fiber treated by γ-glycidoxypropyltrimethoxysilane. The average fragment length decreased with increasing tensile yield strength of resin, which suggests that the interfacial shear strength determined in the fragmentation test should be different depending on the tensile yield strength of resin used. The important phenomenon observed is the transition of the micro-damage mode from matrix crack to interfacial debonding. An elastoplastic shear-lag model was used to calculate the shear stress and fiber tensile stress distributions considering different plastic behaviors of the matrices. The theoretical results indicate that the plastic behavior of the matrix has a large influence on stress transfer. Based on elastic and plastic properties of the matrix, the fiber fragmentation behavior in the matrix is predicted. Experimental and theoretical results are favorably compared.  相似文献   

10.
Carbon fiber (CF) / poly (ethylene terephthalate) (PET) composites were prepared with various contents (2–15wt%) of short carbon fibers. To investigate the effect of surface treatment of the CF on the mechanical properties of the composites, three specimens were prepared; those with short carbon fibers (called SCF), short carbon fibers oxidized with nitric acid (called NASCF) and the fibers oxidized with nitric acid and treated with silane coupling agent (called SCSCF). Flexural, tensile and impact tests were performed to observe mechanical behavior of the specimens. The morphology of the specimens was also studied with a scanning electron microscope (SEM). SCSCF composite had better mechanical properties than the other composites with the same content of carbon fibers since the coupling agent resulted in better interfacial adhesion between the fiber and the matrix.  相似文献   

11.
The effects of Ni coating on the mechanical behaviors of single graphene sheet and their embedded Al matrix composites under axial tensionare investigated using molecular dynamics (MD) simulation method. Theresults show that the Young's moduli and tensile strength of grapheneobviously decrease after Ni coating. The results also show that the mechanical properties of Al matrix can be obviously increased by embedding asingle graphene sheet. From the simulation, we also find that the Young'smodulus and tensile strength of the Ni-coated graphene/Al composite isobviously larger than those of the uncoated graphene/Al composite. Theincreased magnitude of the Young's modulus and tensile strength ofgraphene/Al composite are 52.27 and 32.32 at 0.01 K, respectively,due to Ni coating. By exploring the effects of temperature on the mechanicalproperties of single graphene sheet and their embedded Al matrix composites, it is found that the higher temperature leads to the lower critical strain and tensile strength.  相似文献   

12.
为了提高5052铝合金的粘接性能,利用脉冲光纤激光的短脉冲和高峰值功率的特性,对铝合金试件进行了激光毛化试验研究。通过正交实验法,研究了平均功率、扫描速度、脉冲频率和脉冲宽度等工艺参数对激光毛化质量的影响,以及各工艺参数的影响权重,并求得最佳工艺参数,最佳工艺参数为平均功率90 W、扫描速度10 mm/s、脉冲频率1000 kHz、脉冲宽度200 ns。根据优化后的工艺参数,加工获得了粗糙度2.35 μm,然后对激光毛化后的铝合金试件进行单搭接拉伸试验,研究发现粘接强度随着粗糙度的增大而增大,当粗糙度到达一定程度时,粘接强度反而会随着粗糙度的增大而减小。另外,粘接强度还跟铝合金表面的微织构的类型及疏密程度都有很大关系。  相似文献   

13.
《Composite Interfaces》2013,20(1):49-58
A new continuum approach to micro-mechanics of short fiber composites yielded two separate methods of estimating the apparent interfacial shear strength and fiber orientation efficiency. The methods exploit the compilation of the effects of fiber length distribution and interfacial shear strength on strengthening efficiency into a function of strain. The In-Built Method derives a unique combination of apparent interfacial shear strength and fiber orientation efficiency being able to reproduce the experimental stress–strain curve of a short fiber reinforced composite with a very low residual standard deviation. The Boundary Method accomplishes rapid interfacial shear strength screening in materials selection by constructing and utilizing the proposed selection chart.  相似文献   

14.
The present study explains the role of surface modification of constituent materials on composite material performance. The influence of silane and nano-hybrid coatings on mechanical properties of basalt fibers and composite materials on their base was investigated. Infrared spectroscopy indicated that modification of basalt fiber surface and nano-SiO2 was successfully applied. The surface modification leads to the significant increase in the tensile strength of basalt fibers compared to the non-coated fibers. The tensile strength of silane-treated fibers was established 23% higher than the non-coated fibers, indicating that silane plays a critical role in the strength retention of basalt fibers. Also it was pointed out that silane coupling agents can be used for the preparation of the nano-hybrid coating. Addition of SiO2 nanoparticles into the fiber surface was incorporated to enhance the interfacial bonding of basalt fiber reinforced epoxy composite.  相似文献   

15.
《Composite Interfaces》2013,20(5-6):361-391
We propose a new model for characterization of strength properties of fiber-polymer interfaces by means of a single fiber pull-out test. Our model is based on shear-lag analysis using a bilinear bond law (stress–slip relationship) which, in turn, is a simplified representation of the true stress behavior as a function of strain for cold-drawing polymers. According to this law, the fiber-polymer interface is subjected to the following successive processes: (1) linear loading within the elastic region; (2) yielding and subsequent bond strengthening with increasing strain; (3) local debonding and interfacial crack propagation along the interface; (4) post-debonding friction. Both crack propagation and extension of the yielded zone can be stable and unstable, depending on the values of interfacial parameters and the load applied to the free fiber end. The procedure of construction of theoretical force–displacement curves for a pull-out test is described in detail. Theoretical curves exhibit such features as multiple kinks and non-linear regions, whose positions and shape are related to interfacial parameters. By fitting experimental curves with theoretical ones, these parameters can be determined for each separate pull-out specimen. Practical examples are provided for basalt fiber–polypropylene and glass fiber–polypropylene specimens.  相似文献   

16.
Laser shock processing was performed on 00Cr12 standard tensile specimens to reveal its effect on fatigue properties. Mechanical properties of the specimens were tested at the temperatures of 25 °C, 400 °C, 500 °C and 600 °C respectively. The correlations between the fatigue times and the axial strain at different temperatures were explored. The results indicate that the anti-fatigue life of material is enhanced greatly at the room temperature after laser shock processing in which residual compressive stress is mechanically produced into the surface. The yield strength and the elasticity coefficient of 00Cr12 specimens are enhanced greatly after laser shock processing; the cycle times are obviously longer at the elevated temperature, and the laser-shocked samples exhibit lower plastic strain amplitudes compared with the non-treated ones.  相似文献   

17.
The ageing effect of glass/epoxy composite laminates exposed to seawater environment for different periods of time was investigated using acoustic emission (AE) monitoring. The mass gain ratio and flexural strength of glass fiber reinforced plastic (GFRP) composite laminates were examined after the seawater treatment. The flexural strength of the seawater treated GFRP specimens showed a decreasing trend with increasing exposure time. The degradation effects of seawater are studied based on the changes in AE signal parameters for various periods of time. The significant AE parameters like counts, energy, signal strength, absolute energy and hits were considered as training data input. The input data were taken from 40% to 70% of failure loads for developing the radial basis function neural network (RBFNN) and generalised regression neural network (GRNN) models. RBFNN model was able to predict the ultimate failure strength and could be validated with the experimental results with the percentage error well within 0.5–7.2% tolerance, whereas GRNN model was able to predict the ultimate failure strength with the percentage error well within 0.5–4.4% tolerance. The prediction accuracy of GRNN model is found to be better than RBFNN model.  相似文献   

18.
Abstract

The polyoxymethylene (POM)/basalt fiber composites were prepared by use of long fiber-reinforced thermoplastic technology through melt pultrusion. The mechanical and tribological properties, morphology, and thermal stability of the resulting composites were investigated. The composites exhibit significant improvements in tensile, flexural, and notched impact strength. These mechanical strength and toughness are dependent on the fiber content over the full range of the study. The residual fiber length and distribution in the injection-molded specimens were characterized. The prominent reinforcement effect of basalt fiber on POM is derived from the supercritical fiber length, which is much longer than that of the short fiber-reinforced ones and thus makes the composites take full advantage of the strength of the reinforcing fibers. The Kelly–Tyson model was used to predict the ultimate tensile strength of POM composites using the measured values of residual fiber length in the matrix, but the deviations were observed at the high contents of basalt fiber. The morphologic investigation indicates that the fiber pullout and fiber breakage both contribute energy dissipation to the tensile fracture of the composites. The tribological characterization indicates that the friction coefficients and specific wear rates of POM composites also decrease remarkably. Such an improvement of tribological performance is due to the presence of the high wear-resistant basalt fibers on the top of the worn surface bearing the dynamic loadings under sliding. Moreover, the dynamic mechanical analysis reveals that the storage moduli of the composites increase with increasing the fiber content, whereas the loss factors present an opposite trend.  相似文献   

19.
邵建立  王裴  何安民  秦承森  辛建婷  谷渝秋 《物理学报》2013,62(7):76201-076201
采用嵌入原子势模型和分子动力学方法, 模拟研究了三角波加载下金属铝动态破坏的微观过程和动力学性质. 根据原子中心对称参数变化给出了样品微结构演化过程, 解读了熔化前后破坏过程的形态差异; 基于Virial定理统计了样品中压力和温度等力学量波形, 分析了熔化前后材料的强度变化. 通过不同碰撞速度的模拟, 讨论了破碎区内物质形态和密度分布的变化, 给出了材料破坏深度的变化规律. 研究还发现, 熔化后材料的动态拉伸强度已显著降低, 而此时由声学近似推算的材料拉伸强度已明显高于内部应力直接计算结果. 关键词: 破坏 分子动力学 冲击  相似文献   

20.
界面力学性能是影响石墨烯/柔性基底复合结构整体力学性能的关键因素,因此对该结构界面切应力传递机理的研究十分必要.考虑了石墨烯和基底泊松效应的影响,本文提出了二维非线性剪滞模型.对于基底泊松比相比石墨烯较大的情况,利用该模型理论研究了受单轴拉伸石墨烯/柔性基底结构的双向界面切应力传递问题.在弹性粘结阶段,导出了石墨烯双向正应变和双向界面切应力的半解析表达式,分析了不同位置处石墨烯正应变和界面切应力的分布规律.导出了石墨烯/柔性基底结构发生界面滑移的临界应变,结果表明该临界应变低于利用经典一维非线性剪滞模型得到的滑移临界应变,并且明显受到石墨烯宽度尺寸以及基底泊松比大小的影响.基于二维非线性剪滞模型建立有限元模型(FEM),研究了界面滑移阶段石墨烯双向正应变和双向界面切应力的分布规律.与一维非线性剪滞模型的结果对比表明,当石墨烯宽度较大时,二维模型和一维模型对石墨烯正应变、界面切应力以及滑移临界应变的计算结果均存在较大差别,但石墨烯宽度很小时,二维模型可近似被一维模型代替.最后,通过与拉曼实验结果的对比,验证了二维非线性剪滞模型的可靠性,并得到了石墨烯/聚对苯二甲酸乙二醇酯(PET)基底结构的界面刚度(100 TPa/m)和界面剪切强度(0.295 MPa).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号