首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
《Composite Interfaces》2013,20(7-9):711-729
The surfaces of kenaf fibers were treated with three different silane coupling agents. 3-glycidoxypropyltrimethoxy silane (GPS), 3-aminopropyltriethoxy silane (APS), and 3-methacryloxypropyltrimethoxy silane (MPS). Among them, the most effective one for the property improvement was GPS when it was applied to the kenaf fiber surfaces at 0.5 wt%. Thermoplastic polypropylene (PP) and thermosetting unsaturated polyester (UPE) matrix composites with chopped kenaf fibers untreated and treated at different GPS concentrations from 0.1 wt% to 5 wt% were fabricated using compression molding technique. The present study demonstrates that the interfacial, flexural, tensile, and dynamic mechanical properties of both kenaf/PP and kenaf/UPE composites importantly depend on the GPS treatments done at different concentrations. The greatest property improvement of both thermoplastic and thermosetting polymer composites was obtained with the silane treatment at 0.5 wt% and the mechanical properties were comparable with E-glass composites prepared the same polymer matrix under the corresponding fiber length and fiber loading. The results also agreed with each other with regard to their interfacial shear strength, flexural properties, tensile properties, storage modulus, with support of fracture surfaces of the composites.  相似文献   

2.
《Composite Interfaces》2013,20(5-6):401-410
_The effect of surface treatment on mechanical properties of carbon fibers has been investigated by application of plasma polymerization of selected monomers in the vapor phase. The role of the fiber-matrix interface on carbon fiber-reinforced epoxy resin composites has also been studied. Composites have been prepared separately by the use of plasma-modified and unmodified carbon fibers in the epoxy resin matrix. The mechanical properties of carbon fibers (Hercules and Grafil) as well as of fiber/epoxy composites were examined by using single filament and three-point bending tests, respectively. It was observed that plasma polymerization treatment at selected plasma conditions led to significant improvement of interlaminar shear and flexural strength values of composites.  相似文献   

3.
《Composite Interfaces》2013,20(5):473-479
Continuous Nextel 720 fibers reinforced SiC composites with PyC interface are fabricated by LPCVI at 1000°C for 200 h using SiCH3Cl3 as precursor. The mechanical properties at RT and 1300°C are measured by three-point bending. The microstructures of the interface are characterized by TEM. The results indicate the composites have the metal-like behavior of fracture, whether they are at RT or high temperature. The RT and 1300°C strengths are 310 MPa and 140 MPa, respectively. The RT and 1300°C strains are 0.32% and 0.12%, respectively. The loss of flexural strength and strain of the Nextel 720/SiC composites at high temperature result from stronger residual thermal stress caused by the mismatch of CTE between fibers and matrix. A gap appears between fibers and PyC interface after the 1300°C test, which could be resulted from 7.7% compressive strain of PyC interface caused by the residual thermal stress and 0.1% sintering shrinkage of Nextel 720 fiber.  相似文献   

4.
Biodegradable composites made from bagasse fiber and biodegradable resin were fabricated and the flexural properties of the composites investigated in terms of the effects of fiber length, fiber volume fraction, and different alkali treatments of the bagasse fibers. The flexural properties of the composites increased with the increase in fiber length but decreased below the critical fiber length. The flexural properties increased with the increase in fiber volume fraction. The scanning electron microscope (SEM) micrographs showed that compression of the cellulose structure of bagasse fiber after preparation could have caused enhancement in the flexural properties. Furthermore, when comparing the effects of different alkali treatments of the bagasse fibers, maximum improvement in the flexural properties was observed for the 1% NaOH solution treated fiber composites. After alkali treatment, fibrillation occurred and the surface of the treated fibers became finer; this could contribute to improvement in the fiber‐matrix adhesion and result in enhancing the flexural properties.  相似文献   

5.
Phase morphology formation plays an important role in the mechanical properties of polymer alloy fibers. The development of the blend morphology depends not only on the intrinsic properties of the component polymers but also on extrinsic factors such as viscosity ratio, λ, in the melt spinning process. The effects of blend component viscosity ratio on the morphological, rheological, and mechanical properties of polypropylene/poly(butylene terephthalate) (PP/PBT) melt spun alloy fibers were investigated. Accordingly, two kinds of PP as matrix phase and two kinds of PBT as dispersed phase, with various melt viscosity, were physically mixed and then blended during the extrusion step of melt spinning. SEM micrographs and rheological and mechanical properties evaluations showed that the morphology of PP/PBT alloy fibers strongly depend on the viscosity ratio, λ. Finer diameter PBT fibrils were observed for Viscosity ratios less than 1 (λ < 1) compared to samples with λ > 1. The best mechanical properties in alloy fiber samples were obtained for the viscosity ratio closest to unity (sample with λ = 0.9). The lowest differences among measured complex viscosities at various shear rates (0.1, 10, and 100 s?1) were also observed in samples with λ = 0.9. The results showed that the mechanical properties of alloy fiber samples are affected not only by morphological properties observed at different viscosity ratios but also by the properties of the individual polymer components.  相似文献   

6.
Abstract

Various types of bicomponent fibers composed of polylactide (PLA) and poly(butylene terephthalate) (PBT) with different molecular weights, arranging the polymers separately in the skin or core, were produced by high-speed melt-spinning. The bicomponent spinning, arranging the PLA with high molecular weight (melt flow rate =1.9?g/10?min, L-lactide content = 98.7%) in the skin and the PBT with low molecular weight (IV = 0.835–0.865 dL/g) in the core, resulted in orientation-induced crystallization in the PLA component at the spinning speed of 2?km/min. This crystallization effect was ascribed to a chain-extending treatment applied to the original PLA (MFR = 4.0?g/10?min) to increase its molecular weight. By the treatment the PLA could crystallize when spun even at 1?km/min in its single-component spinning. On the other hand, the bicomponent spinning system interfered with the orientation-induced crystallization of PBT in the core. As a result, the critical spinning speed needed to generate the orientation-induced crystallization in the core PBT was elevated to 4?km/min. The inferior tensile behavior of the bicomponent fibers, as compared to the single-component PLA or PBT fibers, suggested poor compatibility between PLA and PBT. Transesterification reactions rarely occurred at the interface of the two polymers. The bicomponent fibers prepared from high molecular weight PLA and low molecular weight PBT, however, showed sufficient antibacterial activity and physical properties to be suitable for designing medical clothing materials.  相似文献   

7.
Bicomponent fibers consisting of polylactide (PLA) as the sheath and poly(butylene terephthalate) (PBT) as the core were produced by high-speed spinning to obtain materials suitable for medical clothing. The higher-order structure of the PLA fiber component appeared to exhibit simple, alternately stacked, uniaxially oriented amorphous and crystalline regions. Therefore, fairly large tanδ peaks were observed for single-component PLA fibers, even when the orientation-induced crystallization was achieved by high-speed spinning. By conjugating PLA with PBT, although limited mutual interference with the crystallization of each component occurred, both the PLA (Mw?=?170,000, L-lactide content?=?98.7%) and PBT (intrinsic viscosity?=?0.835-0.865 dL/g) could crystallize on a high-speed spinning line, and the proposed formation of a shish-kebab-like structure in the PBT component enhanced the thermal stability of the bicomponent fibers, particularly resulting in shrink-proof properties. The bicomponent fibers developed herein could be deeply dyed at 98?°C, with results comparable to those of industrial polyester, and peeling of the PLA skin layer was rarely observed, even when the dyed fibers were flattened by a rubbing force.  相似文献   

8.
《Composite Interfaces》2013,20(4):275-289
This work was undertaken in order to increase the understanding of the mechanism responsible for fiber/matrix interaction in carbon fiber/thermoplastic composite. From results of previous study on carbon fiber/PEEK composite, which suggested that the formation of the fiber/ matrix interaction was primarily related to a chemisorption mechanism, a study was done of the conditions required to obtain efficient fiber/matrix interaction in PA-12 and PP/carbon fiber composites. The interest in studying carbon fiber composite based on PP and PA-12 was that these two matrices are very different in terms of reactivity, polyamide having many more reactive groups than polypropylene. As expected, due to the non-reactive chemical structure of the polypropylene, fiber/matrix interaction in carbon fiber/PP composite occurred only when the matrix was thermally degraded, i.e. when the composite was molded at high temperature or under long residence time at the melt temperature. For the carbon fiber/PA-12 composite, strong fiber/matrix interaction occurred readily at relatively low molding temperature, i.e. well before thermal degradation of the matrix. It was also found that the short beam shear strength in these composites seems to evolve with molding temperature, and a maximum interfacial strength was observed at a molding temperature corresponding to the thermal degradation of the matrix. This indicates that although matrix degradation often results in strong reduction in the composite performance, some matrix degradation can be beneficial in terms of interfacial mechanical properties. Finally, this work demonstrated that while the formation of fiber/matrix interaction seems to be primarily related to a chemisorption mechanism, the contribution of interphase crystallinity to the interfacial strength is not negligible. In fact, interfacial crystallinity was found to be essential to ensure optimum interfacial strength.  相似文献   

9.
Abstract

The polyoxymethylene (POM)/basalt fiber composites were prepared by use of long fiber-reinforced thermoplastic technology through melt pultrusion. The mechanical and tribological properties, morphology, and thermal stability of the resulting composites were investigated. The composites exhibit significant improvements in tensile, flexural, and notched impact strength. These mechanical strength and toughness are dependent on the fiber content over the full range of the study. The residual fiber length and distribution in the injection-molded specimens were characterized. The prominent reinforcement effect of basalt fiber on POM is derived from the supercritical fiber length, which is much longer than that of the short fiber-reinforced ones and thus makes the composites take full advantage of the strength of the reinforcing fibers. The Kelly–Tyson model was used to predict the ultimate tensile strength of POM composites using the measured values of residual fiber length in the matrix, but the deviations were observed at the high contents of basalt fiber. The morphologic investigation indicates that the fiber pullout and fiber breakage both contribute energy dissipation to the tensile fracture of the composites. The tribological characterization indicates that the friction coefficients and specific wear rates of POM composites also decrease remarkably. Such an improvement of tribological performance is due to the presence of the high wear-resistant basalt fibers on the top of the worn surface bearing the dynamic loadings under sliding. Moreover, the dynamic mechanical analysis reveals that the storage moduli of the composites increase with increasing the fiber content, whereas the loss factors present an opposite trend.  相似文献   

10.
Coir/silk fiber-reinforced polypropylene (PP) based unidirectional composites (40 wt.%) were manufactured by compression molding. Coir/silk fibers and PP sheets were treated with ultraviolet radiation at different intensities and then composites were fabricated. It was found that mechanical properties of irradiated silk/irradiated PP composites were found to increase significantly compared to the untreated ones and even higher than that of irradiated coir/irradiated PP composites. Soil degradation tests indicated that irradiated coir/irradiated PP composites significantly lost much of its mechanical properties, but irradiated silk/irradiated PP composites retained their strength of its original integrity. Scanning electron microscopy and water uptake of both types of composites were also investigated.  相似文献   

11.
易军 《物理学报》2017,66(17):178102-178102
将块体材料制备成微纳米纤维时,其力学性能会得到进一步的提高,甚至具备块体材料所没有的力学行为.非晶态材料可经过熔体拉丝一次性成型而得到所需尺寸的均匀纤维,纤维表面质量好,其制备过程相对简单且节能.由于非晶材料短程有序、长程无序的结构,具备优异的力学性能,所以非晶纤维有着广泛的应用前景和基础研究价值.本文对能制备成非晶纤维且有优异力学性能的材料做了简单介绍,对非晶纤维的制备方法及其成型物理机制、非晶纤维的力学行为及其物理机制进行了综述,最后总结了非晶纤维的制备和力学行为的研究中存在的问题,对非晶纤维的发展前景做了展望.  相似文献   

12.
In this study, natural fibers (agave, coir, and pine) were surface treated with maleated polyethylene (MAPE) with two main objectives: (1) to improve the mechanical properties of natural fiber composites produced by rotational molding and (2) to increase the fiber content in the composite. The rotomolded composites were produced at 0, 10, 20, 30, and 40% wt. of fiber contents (treated or untreated) and characterized in terms of morphology and mechanical properties (hardness, impact, tension, and flexion). The results showed that MAPE surface treatment was more successful for agave and coir than for pine fibers due to their respective chemical composition. In general, surface treatment led to better fiber distribution and a more uniform composite morphology allowing the possibility to use higher fiber contents in rotational molding. At low fiber contents (10 and 20% wt.), the mechanical properties were improved using treated fiber composites (TFC) compared to the neat polymer and untreated fiber composites (UFC). Although the mechanical properties of TFC decreased at high fiber contents (30 and 40% wt.), they were substantially higher (about 160, 400, and 100% for impact, tensile, and flexural properties, respectively) than for UFC.  相似文献   

13.
J. Li 《Applied Surface Science》2009,255(20):8682-8684
Dielectric barrier discharges (DBD) in ambient air are used on carbon fiber to improve the fiber surface activity. Carbon fibers with length of 75 μm are placed into the plasma configuration. The interaction between modified carbon fibers and polypropylene (PP) was studied by three-point bending (TPB) test. The chemical changes induced by the treatments on carbon fiber surface are examined using X-ray photoelectron spectroscopy (XPS). XPS results reveal that the carbon fiber modified with the DBD at atmospheric pressure show a significant increase in oxygen and nitrogen concentration. These results demonstrate that the surface of the carbon fiber is more active and hydrophilic after plasma treatments using a DBD operating in ambient air.  相似文献   

14.
《Composite Interfaces》2013,20(7-9):849-867
Commingled polypropylene (PP)/banana granules were fabricated from slivers by mixing PP fibers and banana fibers by textile equipment. By twisting the sliver, the reinforcing fibers were compacted and bonded with the molten matrix material. PP/banana composites were prepared from commingled PP/banana granules by injection moulding method with special reference to the effect of maleic anhydride modified polypropylene (MAH-PP) concentration. The mechanical properties of the composites were found to depend on the concentration of MAH-PP. The tensile and flexural properties of the composites increased with the addition of MAH-PP up to 2 wt%. After 2 wt% addition of MAH-PP, these properties tend to be stabilized. On the other hand the unmodified composites showed the maximum impact strength. Fourier transform infrared spectroscopic (FTIR) analysis of the MAH-PP modified composites showed evidence of a chemical bridge between the hydroxyl group of the banana fiber and maleic anhydride of the MAH-PP through an esterification reaction. The feature peak of the esterification occurred in the range ~ 1743 cm?1. In order to confirm the esterfication reaction further, FTIR spectra of the banana microfibrils and MAH-PP modified PP/banana microfibril composites were taken and compared. The tensile fracture surfaces of the unmodified and MAH-PP modified PP/banana composites were studied by scanning electron microscopy (SEM). An improvement in adhesion between the fiber and the matrix was observed in the case of MAH-PP modified composites. Two different processing methods, both injection and compression mouldings were performed to prepare the PP/banana composites. Tensile properties of the composites prepared by these two methods were compared. The enhancement of tensile properties for injection-moulded composites compared to the compression-moulded composites is owing to the occurrence of orientation, better mixing and interaction between the fiber and the matrix during injection moulding. Finally, experimental results of the tensile properties of the injection-moulded composites have been compared with theoretical predictions.  相似文献   

15.
High-speed melt spinning of racemate polylactide (r-PLA), which is a blend of equal amounts of poly(l-lactide) and poly(d-lactide) molecules, was performed up to the take-up velocity of 7.5 km/min. In the fiber structure analysis, particular attention was paid to the formation of stereocomplex crystals, because this crystal form has a melting temperature about 60° higher than the homocrystals. It was found that highly oriented and highly crystallized fibers containing the α-form and stereocomplex crystals were obtained when the take-up velocity exceeded about 4 km/min. The amount of stereocomplex crystal was higher under the spinning conditions of higher take-up velocity, lower throughput rate, and lower extrusion temperature. Under these conditions, higher tensile stress can be applied to the spinning line, and therefore, the orientation-induced crystallization is promoted. Annealing of the fibers obtained at high-take-up velocities, such as 6 km/min, which already have the crystalline structure with a certain amount of stereocomplex crystal, at a temperature between the melting temperatures of α-form and stereocomplex crystals, yielded the fiber structure mainly consisting of highly oriented stereocomplex crystal. The annealed fibers showed fairly high mechanical properties and good thermal stability.  相似文献   

16.
Multiscale glass fiber epoxy matrix composites containing nanodiamonds were fabricated using vacuum bagging technique. Three different loadings of nanodiamonds were incorporated in epoxy resin after their functionalization through ozone-treatment, i.e., 0.1, 0.3 and 0.5 wt%. The functionalization of nanodiamonds was confirmed by infrared spectroscopy, which improved the dispersion of nanodiamond in epoxy resin thus improving the mechanical properties. Tensile, compression, flexural and interlaminar shear properties of the composites were improved. The tensile, compression and flexural strengths improved up to 36, 56 and 30% by the addition of 0.5 wt% nanodiamonds while the corresponding moduli increased to 30, 125 and 46%, respectively. An improvement of 38% in interlaminar shear strength was observed. The microscopy of the composites was performed using optical and electron microscopy and proper impregnation of glass fibers and the absence of the agglomerates of nanodiamonds were ensured. The homogeneous dispersion of nanodiamonds and their adhering role at fiber/matrix interface improved the mechanical properties of the composites. The developed composites are ideal candidate materials for engineering applications demanding high specific mechanical properties.  相似文献   

17.
The main aim of this study was to deal with one of the major drawbacks of polypropylene (PP) fibers, i.e. low resiliency, by incorporating poly (trimethylene terephthalate) (PTT) nano-fibrils as a dispersed material into the PP polymer matrix. Thanks to the special helical shape of the PTT polymer backbone, the incorporated nano-fibrils of the PTT polymer strengthened the resiliency of the blend fibers. The presence of 10 and 15?wt% of PTT in the blend fibers led to an approximately 20% increase in the resilience behavior, compared to pure PP fibers, with the mechanical properties of the PP matrix preserved. The development of the fibrillar structures during the different steps of the melt spinning process was confirmed by scanning electron microscopy (SEM), and the lowest mean diameter of the nano-fibrils was 64?nm for the hot drawn blend fiber samples consisting of 10?wt% of PTT. In summary, we suggest the optimized blend fiber samples produced in this research will be a promising candidate for a wide range of engineering applications.  相似文献   

18.
Abstract

To improve the mechanical properties of poly(glycolic acid) (PGA) fibers prepared by the direct spin-drawing process, the concept of “melt structure control” was introduced. A heating chamber was installed in the vicinity of the spinning head and a low take-up velocity in the melt spinning process was adopted to reduce the Deborah number in the spin-line. As a result, improvement of the toughness of as-spun fibers prepared by the melt-spinning process was accomplished, and the drawn fibers of high-strength and high-toughness were obtained by applying an additional in-line drawing process. Entanglement density reduction in the melt spinning process was found to be suppressed by installing a heating chamber as well as by lowering the take-up velocity. Through the matching of the true stress versus true strain curves of in-line drawn fibers by shifting the curves along the true-strain axis, the network draw ratio of the drawn fibers was estimated and the master curves for individual spinning conditions were prepared. The master curves were found to show steeper increases from lower true-strains for the lower Deborah number conditions, whereas the increases in birefringence and strength of the drawn fibers proceeded from the lower network draw ratios.  相似文献   

19.
In this study, in-situ compatibilized polymer blends of polypropylene (PP) and poly (butyl methacrylate-co-hydroxyethyl methacrylate) P(BMA-co-HEMA) were prepared in a corotating twin screw extruder through the reactive extrusion of mixtures of PP, P(BMA-co-HEMA), butyl methacrylate, and benzoyl peroxide. In the process of reactive extrusion, butyl methacrylate and benzoyl peroxide were used as the monomer and the initiator, respectively. Thereafter the polymer blend was made into fibers via melt spinning. The miscibility of PP and P(BMA-co-HEMA) in the blend fibers was investigated using field emission scanning electron microscopy. The absorption percentage of the blend fibers for organic liquids and their remaining ratios after the absorption tests were also determined and used to prove the generation of the third phase. The changes in the fiber morphology during organic liquid absorption were observed using polarized light microscopy. In addition, the effect of the miscibility on the crystal structure and melting characteristic of the blend fibers were analyzed using wide-angle X-ray diffractometry and differential scanning calorimetry. Finally, the thermal stability of the blend fibers that was associated with the miscibility of PP and P(BMA-co-HEMA) in the blend fibers were characterized by using thermogravimetry and dynamic thermomechanical analysis.  相似文献   

20.
《Composite Interfaces》2013,20(3-4):325-339
It is well known that the bending test provides a simple and convenient way of measuring the strength of unidirectional composite materials and gives very repeatable results. The aim of this research work was to study and analyze the flexural properties of unidirectional reinforced carbon fiber/epoxy (UD) specimens subjected to three-point loading. The effect of span-to-thickness ratio (L/h) and width-to-thickness ratio (b/h) on the three-point bending of UD composites has been investigated. Results have shown that unidirectional composites exhibit a transition in the failure mode from shear delamination to fiber yield with the span-tothickness ratio (L/h) is increased. The observed experimental data are confirmed by theoretical considerations presented here. Using the classical beam theory the conclusions of the tests could be extended by applying some reasonable requirements and simple rational fractional functions identified. This made it possible to express the asymptotic values of the flexural strength, the flexural modulus and apparent shear stress in a form that is independent from the values of the span-to-thickness ratio applied, and characterize the bending behavior of the composite materials at a more exact level.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号