首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Composite Interfaces》2013,20(5-6):443-458
The mechanism with which the fiber-matrix interfacial strength exerts its influence on the compressive strength of fiber reinforced composites has been studied by measuring the axial compressive strength of carbon fiber/epoxy resin unidirectional composite strands having different levels of interfacial shear strength. The composite strands are used for experiments in order to investigate the compressive strength which is not affected by the delamination taking place at a weak interlayer of the laminated composites. The interfacial strength is varied by applying various degrees of liquid-phase surface treatment to the fibers. The efficiency of the compressive strength of the fibers utilized in the strength of the composite strands is estimated by measuring the compressive strength of the single carbon filaments with a micro-compression test. The compressive strength of the composite strands does not increase monotonically with increasing interfacial shear strength but showes lower values at higher interfacial shear strengths. With increasing interfacial shear strength, the suppression of the interfacial failure in the misaligned fiber region increases the compressive strength, while at higher interfacial shear strengths, the enhancement of the crack sensitivity decreases the compressive strength.  相似文献   

2.
《Composite Interfaces》2013,20(4):305-321
Tensile tests are performed on short glass fiber reinforced nylon-6 composite specimens with an open hole. The specimens with four different fiber surface treatments are used. Fiber weight fractions are 10% and 30%. It is found that the dependence of tensile strength on the diameter of hole is different for different fiber weight fractions. To explain the difference in tensile strength, in-situ observation of microscopic failure process around an open hole is conducted. The micro-grids are printed on the specimen surface to observe the microscopic deformation and fracture clearly. The difference in microscopic failure process due to the difference in fiber surface treatment and fiber weight fraction are observed, which explains the difference in tensile strength qualitatively. In addition, micro-grid methods are applied to measure the axial strain distribution in a short fiber in a real composite. The shear-lag prediction is compared with the experimental results. The fiber axial strain distribution obtained by the micro-grid methods is found to agree well with the shear-lag prediction until extensive interfacial debonding occurs.  相似文献   

3.
《Composite Interfaces》2013,20(6):379-399
In estimating interfacial shear strength from the fragmentation process of fibers in single-fiber composites, a problem arises as to the value of the fiber strength if the fiber strengths distribute widely and strongly depend on the fiber length. To overcome this problem, a refined analysis method for simultaneously estimating the fiber and the interfacial shear strength from the fragmentation process has been shown. Agreements between the values estimated with the proposed method and the results of the single-fiber tensile and the direct shear tests have been obtained. It has been shown that the estimation of the interfacial shear strength using the proposed method is insensitive to the matrix properties if the interfacial shear strength is unaltered by the matrix properties, and that the variations of the distribution parameters of the fiber strength is significantly smaller for the proposed method as compared with the single-fiber tensile tests. The results obtained by applying the proposed method to various carbon fibers have been shown.  相似文献   

4.
《Composite Interfaces》2013,20(7-9):769-779
In the present work, the effect of surface treatment methods on the henequen fiber topography and how the surface treatment influences the interfacial shear strength of henequen/unsaturated polyester composites were studied. Two different surface treatment methods were used: soaking method and ultrasonic method. Two different treatment media were used: normal tap water and sodium hydroxide. The result showed that the topography of henequen fiber surfaces was greatly changed, strongly depending on the treatment method and media used. It was demonstrated from the single fiber microbonding test result that the interfacial shear strength (IFSS) between the natural fibers and the matrix of henequen/unsaturated polyester composites was significantly improved by the surface treatments of henequen prior to composite preparation. The topological and interfacial results were quite consistent with each other.  相似文献   

5.
The mechanical properties of carbon fiber reinforced polymer composites depend upon fiber-matrix interfacial properties. To improve the mechanical properties of ?bers/PTFE composites without sacri?cing tensile strength of ?bers, graphene oxide (GO) was introduced onto the surface of CFs by chemical vapour deposition (CVD). This hybrid coating increased the wettability and surface roughness of carbon fibers, which led to improved affinity between the carbon fibers and PTFE matrix. The resulting hybrid-coated carbon fiber-reinforced composites showed an enhancement in the short beam strength compared to un-coated carbon fiber composites. Meanwhile, a signi?cant increase of interlaminar shear strength (ILSS), interface shear strength tests (IFSS) and impact property were achieved in the 5-min-modi?ed CFs.  相似文献   

6.
《Composite Interfaces》2013,20(5):419-440
Carbon fibers were treated in a HF glow discharge in tetrafluoroethylene and octafluorocyclobutane in order to improve their adhesion to poly(tetrafluoroethylene) matrix. As the result of the plasma treatment, a thin (20–140 nm) fluoropolymer coating was deposited onto the fiber surface. The structure of this coating was studied by means of IR spectroscopy, XPS, AFM and SEM techniques. The coating material appeared to be similar to PTFE in its chemical composition but distinguished by branched, partially crosslinked, amorphous structure and included unsaturated chemical bonds. The coating thickness of 70 nm was sufficient to effectively screen the field of molecular forces of the initial substrate, thus, decreasing the surface energy of the fibers and improving their compatibility with the PTFE matrix. The adhesive strength in the PTFE–carbon fiber systems, measured by means of the microbond test, more than doubled upon the plasma treatment (the local interfacial shear strength increased from 10.7 to 29.7 MPa, apparent IFSS from 4.3 to 7.8 MPa), and the interfacial frictional stress increased by 70%. The new composite material consisting of 20% short coated carbon fibers in the PTFE matrix showed better mechanical, thermal and tribological characteristics as compared with the composite reinforced with untreated fibers.  相似文献   

7.
《Composite Interfaces》2013,20(3):263-269
—A novel surface treatment for poly(p-phenylene telephthalamide) (PPTA) fiber is performed with silanes and urethane binder that are usually used as sizes for glass fiber treatment. The PPTA used for the surface treatment is modified by a spinning process to make the gaps between PPTA crystallites open. In this treatment, supercritical carbon dioxide fluid method is used to impregnate the sizing molecules into open gaps in PPTA fiber. After the impregnation, the fiber is heated at 100–170°C to make the gaps close and turn open-gapped fiber to the normal type of PPTA modified with sizes. The interfacial shear strength of fiber to epoxy resin is measured by microdroplet method. The modified PPTA improves the interfacial shear strength by ca. 67% to the interfacial shear strength given by normal PPTA without treatment. Those improvements are 33% without heating, 18% with only silanes, and 12% with only urethane instead of the mixture of silane and urethane. In addition, the fiber strength shows no remarkable decrease after the treatment.  相似文献   

8.
《Composite Interfaces》2013,20(2-3):119-138
Boron nitride (BN)-coated aluminoborosilicate (Nextel? 312) fibers, produced via ammonia nitridation, along with 'as-received' and 'desized' fibers, were composited in a silicon oxycarbide (Blackglas?) matrix. The mechanical properties, failure properties, and fiber–matrix interfacial chemistry of the composite were investigated. BN treated fiber composites show a 90% improvement in flexural strength and substantial increases in shear strength (short beam shear and Iosipescu) over the 'as-received' fiber composite. The composite fabricated with 'desized' fibers underwent spontaneous delamination during pyrolization, precluding mechanical testing. X-ray photoelectron spectroscopy of the starting materials and of composite fracture surfaces combined with scanning electron microscopy and energy dispersive X-ray spectroscopy indicate that the locus of failure of the BN-coated fiber composite occurs at the matrix/BN coating interface.  相似文献   

9.
《Composite Interfaces》2013,20(4):275-289
This work was undertaken in order to increase the understanding of the mechanism responsible for fiber/matrix interaction in carbon fiber/thermoplastic composite. From results of previous study on carbon fiber/PEEK composite, which suggested that the formation of the fiber/ matrix interaction was primarily related to a chemisorption mechanism, a study was done of the conditions required to obtain efficient fiber/matrix interaction in PA-12 and PP/carbon fiber composites. The interest in studying carbon fiber composite based on PP and PA-12 was that these two matrices are very different in terms of reactivity, polyamide having many more reactive groups than polypropylene. As expected, due to the non-reactive chemical structure of the polypropylene, fiber/matrix interaction in carbon fiber/PP composite occurred only when the matrix was thermally degraded, i.e. when the composite was molded at high temperature or under long residence time at the melt temperature. For the carbon fiber/PA-12 composite, strong fiber/matrix interaction occurred readily at relatively low molding temperature, i.e. well before thermal degradation of the matrix. It was also found that the short beam shear strength in these composites seems to evolve with molding temperature, and a maximum interfacial strength was observed at a molding temperature corresponding to the thermal degradation of the matrix. This indicates that although matrix degradation often results in strong reduction in the composite performance, some matrix degradation can be beneficial in terms of interfacial mechanical properties. Finally, this work demonstrated that while the formation of fiber/matrix interaction seems to be primarily related to a chemisorption mechanism, the contribution of interphase crystallinity to the interfacial strength is not negligible. In fact, interfacial crystallinity was found to be essential to ensure optimum interfacial strength.  相似文献   

10.
《Composite Interfaces》2013,20(6):429-445
During a fiber pull-out test, it is desirable to analyze the stress profiles along the embedded fiber directly within the same time scale as the normal pull-out tests. In the present study, the axial tensile stress profiles of the fiber in a model composite are measured during the single-fiber pull-out tests by using stress birefringence of the fiber. It is concluded from the analysis of the measured stress profiles that an effective radius of matrix, i.e. a radius defining the region of the matrix where the major deformation takes place, is not constant but is an increasing function of the interfacial shear stress. By incorporating the variable values of the effective radius of matrix into the shear-lag model, the axial tensile and the interfacial shear stress profiles are calculated. To accurately estimate the interfacial shear strength, the stress distribution along the embedded fiber and the variability of the effective radius of matrix should be taken into account instead of calculating the interfacial shear strength simply from the pull-out stress and the embedded length.  相似文献   

11.
《Composite Interfaces》2013,20(2-3):231-247
Henequen natural fiber-reinforced poly(butylene succinate) biocomposites were prepared through a resin microdroplet formation on a single fiber and also fabricated by a compression molding technique using chopped henequen fibers, surface-treated with electron beam irradiation (EBI) at various dosages. The effect of EBI treatment on the surface characteristics and dynamic mechanical properties of henequen fibers was investigated using SEM, XPS and DMA methods, respectively. Also, the interfacial behavior of biocomposites was explored through a single fiber microbonding test and fracture surface observations. The result indicates that the interfacial shear strength (IFSS) of biocomposites greatly depends on the EBI treatment level on the henequen fiber surface. This study also suggests that appropriate modification of natural fiber surfaces at an optimum EBI dosage significantly contributes to improving the interfacial properties of biocomposites.  相似文献   

12.
《Composite Interfaces》2013,20(1):75-94
Interfacial debonding behavior is studied for unidirectional fiber reinforced composites from both experimental and analytical viewpoints. A new type of two-dimensional unidirectional model composite is prepared using 10 boron fibers and transparent epoxy resin with two levels of interfacial strength. In situ observation of the internal mesoscopic fracture process is carried out using the single edge notched specimen under static loading. The matrix crack propagation, the interfacial debonding growth and the interaction between them are directly observed in detail. As a result, the interfacial debonding is clearly accelerated in specimens with weakly bonded fibers in comparison with those with strongly bonded fibers. Secondary, three-dimensional finite element analysis is carried out in order to reproduce the interfacial debonding behavior. The experimentally observed relation between the mesoscopic fracture process and the applied load is given as the boundary condition. We successfully evaluate the mode II interfacial debonding toughness and the effect of interfacial frictional shear stress on the apparent mode II energy release rate separately by employing the present model composite in combination with the finite element analysis. The true mode II interfacial debonding toughness for weaker interface is about 0.4 times as high as that for a stronger interface. The effect of the interfacial frictional shear stress on the apparent mode II energy release rate for the weak interface is about 0.07 times as high as that for the strong interface. The interfacial frictional shear stress and the coefficient of friction for weak interface are calculated as 0.25 and 0.4 times as high as those for strong interface, respectively.  相似文献   

13.
A theoretical model has been developed to study the mechanical behaviors of the interface between an embedded optical fiber with coating material and a linear strain matrix. The results show that the longitudinal stress and strain in the fiber optic sensor are different from that distributed in the host material and depend on the strain distribution and embedded length of the optical fiber as well as the material properties of the fiber coating. The distribution of interfacial shear strain between the coating and the glass fiber and the distribution of strain/stress of the glass fiber are given.  相似文献   

14.
《Composite Interfaces》2013,20(8):701-714
To investigate the influence of the grafting density and the molecular structure of block copolymers on the interfacial assembly behavior and interfacial shear strength, macromolecular coupling agents, hydroxyl-terminated poly(n-butyl acrylate-b-styrene) (HO-P(BA-b-S)) were synthesized by atom transfer radical polymerization, and then chemically anchored on the glass fiber surfaces to form a well-defined monolayer. The phase separation and 'hemispherical' domain morphologies of diblock copolymer brushes at the polystyrene/glass fiber interface were observed. The interfacial assembly morphology differs with changes in the grafting density of diblock copolymers. When the grafting density is greatest, the highest height difference of the hemispherical domain and the largest surface roughness are achieved, as well as the best interface shear strength. It was also found that the copolymer brush with a PBA block of the polymerization degree (Xn) about 77 is the optimal option for the interfacial adhesion of PS/GF composites. Thus, the grafting density and molecular structure of diblock copolymers determines the interfacial assembly behavior of copolymer brushes, and therefore the interfacial shear strength.  相似文献   

15.
《Composite Interfaces》2013,20(7-9):781-795
In the present study, novel biocomposites with chopped jute fibers and thermosetting polycardanol were prepared using compression molding technique for the first time. Prior to biocomposite fabrication, jute fiber bundles were surface-treated at various concentrations using 3-glycidoxypropyltrimethoxy silane (GPS) and 3-aminopropyltriethoxy silane (APS), respectively. The interfacial shear strength, flexural properties and thermal properties of jute/polycardanol biocomposites reinforced with untreated and silane-treated jute fibers were investigated by means of single fiber microbonding test, three-point flexural test, dynamic mechanical analysis, thermogravimetric analysis and thermomechanical analysis. Both GPS and APS treatments played a role in improving the interfacial adhesion, reflecting that the organofunctional groups located at the end of silane coupling agents may contribute to linking between jute fibers and a polycardanol resin. As a result, it gave rise to increased interfacial shear strength of the biocomposites. Such interfacial improvement also led to increasing the flexural strength and modulus, storage modulus, thermal stability and thermomechanical stability.  相似文献   

16.
In order to study the mechanical properties and the progressive failure process of composite under shear loading, a representative volume element (RVE) of fiber random distribution was established, with two dominant damage mechanisms – matrix plastic deformation and interfacial debonding – included in the simulation by the extended Drucker–Prager model and cohesive zone model, respectively. Also, a temperature-dependent RVE has been set up to analyze the influence of thermal residual stress. The simulation results clearly reveal the damage process of the composites and the interactions of different damage mechanisms. It can be concluded that the in-plane shear fracture initiates as interfacial debonding and evolves as a result of interactions between interfacial debonding and matrix plastic deformation. The progressive damage process and final failure mode of in-plane shear model which are based on constitute are very consistent with the observed result under scanning electron microscopy of V-notched rail shear test. Also, a transverse shear model was established as contrast in order to comprehensively understand the mechanical properties of composite materials under shear loading, and the progressive damage process and final failure mode of composite under transverse shear loading were researched. Thermal residual stress changes the damage initiation locations and damage evolution path and causes significant decreases in the strength and fracture strain.  相似文献   

17.
《Composite Interfaces》2013,20(6):567-580
The experimental results of fragmentation, micro-indentation, pull-out and microdebond tests often exhibit large discrepancies. Since all specimens of the four test methods all have interface ends, the singularity theory of the interface end should be used to evaluate the exactness of the test methods. The eigenvalues of the specimens for the micro-indentation test, pull-out test and microdebond test are calculated and investigated. The results show that the stress singularity of the interface end depends on the Dundurs' parameters and the wedge angles. The interfacial shear strength (IFSS) obtained from the tests loses its rationality if the stress is singular at the interface end. In further analysis, for a carbon fiber-epoxy resin composite, it is found that the microdebond test gives the most reliable IFSS results, if the wedge angle of the resin droplet is less than 40°; the results from the pull-out test are dubious, due to the stress singularity at the interface end. In the micro-indentation test, there is a critical matrix stiffness value for a given fiber, above which the stress at the interface end will be non-singular. The fragmentation test assumes the interfacial shear stress on the fiber fragment of critical length is the IFSS. If debonding does not occur at the interface end, then apparently, the interfacial shear stress on the fiber fragment of critical length is less than the true value of IFSS.  相似文献   

18.
The effect of transcrystallinity in carbon fiber reinforced poly(p-phenylene sulfide (PPS) composites on the apparent shear strength was investigated with the single fiber pull-out test. Transcrystalline zones around the reinforcing fibers do not seem to improve the adhesion level significantly. Neighbor fibers hinder the formation of the transcrystalline zone and a ductile fracture behavior can be observed. However, the apparent strength level is slightly higher for composites containing such reinforcing neighbor fibers compared with single fiber composite samples. During annealing a brittle interface can be formed in the multifiber composite yielding a higher level of the apparent shear strength.  相似文献   

19.
《Composite Interfaces》2013,20(3):289-308
Experimental and theoretical investigations have been conducted to study the dependence of fiber fragmentation behavior on matrix yielding properties. The cured Epikote 828 resins with two types of curing agents have almost similar elastic moduli, but different tensile yield strengths. The interfacial chemistry between fiber and epoxy resin is unchanged due to the same constituent of the epoxy resin. The experimental results indicate that the fragmentation behavior of the fibers embedded in the matrix is significantly different for the tested glass fiber treated by γ-glycidoxypropyltrimethoxysilane. The average fragment length decreased with increasing tensile yield strength of resin, which suggests that the interfacial shear strength determined in the fragmentation test should be different depending on the tensile yield strength of resin used. The important phenomenon observed is the transition of the micro-damage mode from matrix crack to interfacial debonding. An elastoplastic shear-lag model was used to calculate the shear stress and fiber tensile stress distributions considering different plastic behaviors of the matrices. The theoretical results indicate that the plastic behavior of the matrix has a large influence on stress transfer. Based on elastic and plastic properties of the matrix, the fiber fragmentation behavior in the matrix is predicted. Experimental and theoretical results are favorably compared.  相似文献   

20.
Domestic Aramid Fiber III (DAF III) was modified by oxygen plasma treatment. The effects of oxygen plasma treatment power on fiber surface and DAF III reinforced bismaleimides (BMI) composite interfacial properties were investigated, respectively. The fiber surface characteristics were analyzed by X-ray photoelectron spectroscopy, Scanning Electron Microscopy, Atomic Force Microscopy and Dynamic Contact Angles Analysis, respectively. The results showed that oxygen plasma treatment introduced new oxygen containing groups such as C=O and –COO on to the fiber surfaces, changed the fiber surface morphologies and enhanced surface roughness by oxidative reactions and plasma etching. Finally, the fiber surface wettability was effectively improved. The total free energy increased from 49.8 to 71.7 mJ/m2 at maximum with 300 W oxygen plasma treatment. The composite interlaminar shear strength (ILSS) was evaluated by short beam shear measurement. The ILSS value increased from 49.3 to 59.8 MPa (by 21.3%) within 300 W plasma treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号