首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
《Composite Interfaces》2013,20(5):441-448
Zinc oxide thin films have been deposited onto porous silicon (PSi) substrates at high growth rates by radio frequency (RF) sputtering using a ZnO target. The advantages of the porous Si template are economical and it provides a rigid structural material. Porous silicon is applied as an intermediate layer between silicon and ZnO films and it contributed a large area composed of an array of voids. The nanoporous silicon samples were adapted by photo electrochemical (PEC) etching technique on n-type silicon wafer with (111) and (100) orientation. Micro-Raman and photoluminescence (PL) spectroscopy are powerful and non-destructive optical tools to study vibrational and optical properties of ZnO nanostructures. Both the Raman and PL measurements were also operated at room temperature. Micro-Raman results showed that the A1(LO) of hexagonal ZnO/Si(111) and ZnO/Si(100) have been observed at around 522 and 530 cm–1, re- spectively. PL spectra peaks are distinctly apparent at 366 and 368 cm–1 for ZnO film grown on porous Si(111) and Si(100) substrates, respectively. The peak luminescence energy in nanocrystalline ZnO on porous silicon is blue-shifted with regard to that in bulk ZnO (381 nm). The Raman and PL spectra pointed to oxygen vacancies or Zn interstitials which are responsible for the green emission in the nanocrystalline ZnO.  相似文献   

2.
《Composite Interfaces》2013,20(8):733-742
Zinc thin films were deposited onto porous silicon (PSi) substrates by dc sputtering using a Zn target. These films were then annealed under flowing (6 l/min) oxygen gas environment in the furnace at 600°C for 2 h. Porous silicon is used as an intermediate layer between silicon and ZnO films and it provides a large area composed of an array of voids. The PSi samples were prepared using photoelectrochemical method on n-type silicon wafer with (111) and (100) orientation. To prepare porous structures, the samples were dipped into a mixture of HF:ethanol (1:1) for 5 min with current densities of 50 mA/cm2, and subjected to external illumination with a 500 W UV lamp. The surface morphology and the nanorod structure of the ZnO films were characterized by scanning electron microscope (SEM) and X-ray diffraction (XRD). We synthesized the ZnO nanorods with diameter of 80–100 nm without any catalysts or templates. The XRD pattern confirmed that the ZnO nanorods were of polycrystalline structure. The surface-related optical properties have been investigated by photoluminescence (PL) and Raman measurements at room temperature. Micro-Raman results showed that A1(LO) of hexagonal ZnO/Si(111) and ZnO/Si(100) have been observed at 522 cm–1 and 530 cm–1, respectively. PL spectra peaks are clearly visible at 366 cm–1 and 368 cm–1 for ZnO film grown on porous Si(111) and Si(100) substrates, respectively. The PL spectral peak position in ZnO nanorods on porous silicon is blue-shifted with respect to that in unstrained ZnO (381 nm).  相似文献   

3.
Spectroscopic ellipsometry and photoluminescence (PL) measurements on SnO2 nanocrystalline textured films grown on p-InSb (111) substrates by using radio-frequency magnetron sputtering at low temperature were carried out to investigate the dependence of the optical parameters on the SnO2 thin film thickness. As the SnO2 film thickness increases, while the energy gap of the SnO2 film decreases, its refractive index increases. The PL spectra show that the broad peaks corresponding to the donor-acceptor pair transitions are dominant and that the peak positions change with the SnO2 film thickness. These results can help improve understanding for the application of SnO2 nanocrystalline thin films grown on p-InSb (111) substrates in potential optoelectronic devices based on InSb substrates.  相似文献   

4.
ZnO thin films were first prepared on Si(111) substrates using a radio frequency magnetron sputtering system. Then the as-grown ZnO films were annealed in oxygen ambient at temperatures of 700, 800, 900, and 1000°C , respectively. The morphologies of ZnO films were studied by an atom force microscope (AFM). Subsequently, GaN epilayers about 500 nm thick were deposited on the ZnO buffer layers. The GaN/ZnO films were annealed in NH3 ambient at 900°C. The microstructure, morphology and optical properties of GaN films were studied by x-ray diffraction (XRD), AFM, scanning electron microscopy (SEM) and photoluminescence (PL). The results are shown, their properties having been investigated particularly as a function of the ZnO layers. For better growth of the GaN films, the optimal annealing temperature of the ZnO buffer layers was 900°C.  相似文献   

5.
Porous structures were formed on ZnO thin films which were grown by an electrochemical deposition (ECD) method. The growth processes were carried out in a solution of dimethylsulfoxide (DMSO) zinc perchlorate, Zn(ClO4)2, at 120 °C on indium tin oxide (ITO) substrates. Optical and structural characterizations of electrochemically grown ZnO thin films have shown that the films possess high (0002) cc-axis orientation, high nucleation, high intensity and low FWHM of UV emission at the band edge region and a sharp UV absorption edge. Nanoporous structures were formed via self-assembled monolayers (SAMs) of hexanethiol (C6SH) and dodecanethiol (C12SH). Scanning electron microscope (SEM) measurements showed that while a nanoporous structure (pore radius 20 nm) is formed on the ZnO thin films by hexanathiol solution, a macroporous structure (pore radius 360 nm) is formed by dodecanethiol solution. No significant variation is observed in X-ray diffraction (XRD) measurements on the ZnO thin films after pore formation. However, photoluminescence (PL) measurements showed that green emission is observed as the dominant emission for the macroporous structures, while no variation is observed for the thin film nanoporous ZnO sample.  相似文献   

6.
Flower-shape clustering GaN nanorods are successfully synthesized on Si(111) substrates through ammoniating Ga2O3/ZnO films at 950℃. The as-grown products are characterized by x-ray diffraction (XRD), scanning electron microscope (SEM), field-emission transmission electron microscope (FETEM), Fourier transform infrared spectrum (FTIR) and fluorescence spectrophotometer. The SEM images demonstrate that the products consist of flower-shape clustering GaN nanorods. The XRD indicates that the reflections of the samples can be indexed to the hexagonal GaN phase and HRTEM shows that the nanorods are of pure hexagonal GaN single crystal. The photoluminescence (PL) spectrum indicates that the GaN nanorods have a good emission property. The growth mechanism is also briefly discussed.  相似文献   

7.
The light-emitting properties of cubic-lattice silicon carbide SiC films grown on Si(100) and Si(111) substrates with VPE at low temperatures (T gr ∼ 700°C) are discussed. Investigations of the grown films reveal a homogeneous nanocrystalline structure involving only the 3C-SiC phase. When the electron subsystem of the structure is excited by a He-Cd laser emitting at λexit = 325 nm, the photoluminescence (PL) spectra contain a rather strong emission band shifted by about 3 eV toward a short-wave spectral region. At low temperatures, the PL integral curve is split into a set of Lorentz components. The relation between these components and the peculiarities of the energy spectrum of electrons in the nanocrystalline grains of the silicon carbide layers is discussed.  相似文献   

8.
J.H. Cai  G. Ni  G. He  Z.Y. Wu 《Physics letters. A》2008,372(22):4104-4108
ZnO thin films on fused quartz substrates were prepared by a glycol-based Pechini method. The structural and optical properties were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), optical transmittance spectrum, and photoluminescence (PL) spectrum. A red emission around 700 nm was found in PL spectrum, and its peak intensity gained a strong enhancement (140%) while annealing temperature increased from 700 °C to 800 °C. The red emission was ascribed to the possible high defect density in boundary layers of nanocrystalline grains.  相似文献   

9.
气相输运法制备ZnO薄膜(英文)   总被引:2,自引:1,他引:1       下载免费PDF全文
林秀珠  李静  吴启辉 《发光学报》2010,31(2):189-193
运用气相输运技术在不同的衬底上制备ZnO薄膜,同时对这些ZnO薄膜的表面形貌、晶体结构和光学特性进行表征。在扫描电子显微镜图像上可以看到,相比没有镀金的Si衬底,ZnO纳米颗粒在镀金的Si衬底上的生长尺寸较大。X射线衍射测试结果表明,在Si(111)和Si(100)衬底上生长的ZnO薄膜显示出不同的六角纤锌矿结构的衍射峰,但没有出现立方闪锌矿ZnO结构的衍射峰。在镀金的Si衬底上,ZnO薄膜生长取向主要为c轴方向。此外,所有ZnO样品的光致发光谱上均只出现一个狭窄且强的紫外峰,约在389 nm(3.19 eV)波长处。  相似文献   

10.
Pine-needle-shaped GaN nanorods have been successfully synthesized on Si(111) substrates by ammoniating Ga2O3/Nb films at 950 °C in a quartz tube. The products are characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and field-emission transmission electron microscope (FETEM). The results show that the pine-needle-shaped nanorods have a pure hexagonal GaN wurtzite with a diameter ranging from 100 to 200 nm and a length up to several microns. The photoluminescence spectra (PL) measured at room temperature only exhibit a strong emission peak at 368 nm. Finally, the growth mechanism of GaN nanorods is also briefly explored.  相似文献   

11.
A ZnO thin film was successfully synthesized on glass, flat surface and textured silicon substrates by chemical spray deposition. The textured silicon substrate was carried out using two solutions (NaOH/IPA and Na2CO3). Textured with Na2CO3 solution, the sample surface exhibits uniform pyramids with an average height of 5 μm. The properties and morphology of ZnO films were investigated. X-ray diffraction (XRD) spectra revealed a preferred orientation of the ZnO nanocrystalline film along the c-axis where the low value of the tensile strain 0.26% was obtained. SEM images show that all films display a granular, polycrystalline morphology. The morphology of the ZnO layers depends dramatically on the substrate used and follows the contours of the pyramids on the substrate surface. The average reflectance of the textured surface was found to be around 13% and it decreases dramatically to 2.57% after deposition of a ZnO antireflection coating. FT-IR peaks arising from the bonding between Zn–O are clearly represented using a silicon textured surface. A very intense photoluminescence (PL) emission peak is observed for ZnO/textured Si, revealing the good quality of the layer. The PL peak at 380.5 nm (UV emission) and the high-intensity PL peak at 427.5 nm are observed and a high luminescence occurs when using a textured Si substrate.  相似文献   

12.
Wurtzite GaN nanorods have been successfully synthesized on Si(111) substrates through ammoniating Ga2O3/Nb films under flowing ammonia atmosphere at 950 °C in a quartz tube. The nanorods have been confirmed as hexagonal wurtzite GaN by X-ray diffraction (XRD) and selected-area electron diffraction (SAED). Scanning electron microscopy (SEM) and field-emission transmission electron microscope (FETEM) reveal that the nanorods are straight and uniform, with a diameter of ranging from 100 to 200 nm and lengths up to several microns. The photoluminescence spectra (PL) measured at room temperature only exhibit a strong emission peak at 368.5 nm. Finally, the growth mechanism of GaN nanorods is also briefly discussed.  相似文献   

13.
ZnO, SnO2 and zinc stannate thin films were deposited using filtered vacuum arc deposition (FVAD) system on commercial microscope glass and UV fused silica substrates (UVFS) at room temperature (RT). The structural and morphological analyses were performed using X-ray diffraction (XRD) and Atomic Force Microscopy (AFM), respectively. XRD patterns of ZnO films deposited at RT had strongly c-axis orientation, whereas SnO2 and zinc stannate films had amorphous structure as they did not have any defined patterns. Average crystalline size and surface grain size of ZnO films were ∼16 nm, as determined from diffraction line broadening and AFM images, respectively. Optical constants in the 250-1100 nm wavelength range were determined by variable angle spectroscopic ellipsometry and transmission measurements. The transmission of the deposited films in the VIS was 80-90%, affected by interference. The refractive indices and the extinction coefficients of deposited ZnO, SnO2 and zinc stannate films were in the range 1.87-2.15 and 0.02-0.04, depending on wavelengths and deposition parameters. The optical band gap (Eg) was determined by the dependence of the absorption coefficient on the photon energy at short wavelengths. Its values for ZnO, SnO2 and zinc stannate were in the range 3.25-3.30 eV, 3.60-3.98 eV and 3.43-3.52 eV, respectively, depending on the deposition pressure.  相似文献   

14.
X-ray diffraction, scanning electron microscopy, transmission electron microscopy, and high resolution transmission electron microscopy were used to study tin oxide thin films deposited on Si(100) substrates at room temperature using pulsed laser deposition techniques with a sintered cassiterite SnO2 target and subsequently heat-treated. X-ray diffraction and scanning electron microscopy results demonstrated that the as-prepared thin films consisted of an amorphous matrix as well as plume-like features, which are shown many micropores. The thin films that were heat treated for 2 h at 150 °C had tetragonal rutile nanocrystalline SnO2 structures. The microstructural evolution of the tin oxide thin films during the heat treatment is discussed in the paper. PACS 81.15.Fg; 73.61Jc; 81.05.Gc; 81.40.Ef  相似文献   

15.
石英衬底上Au缓冲层对ZnO薄膜微结构的影响   总被引:2,自引:2,他引:0       下载免费PDF全文
李宁  陈金菊  邓宏 《发光学报》2010,31(2):219-222
采用单源化学气相沉积(SSCVD)法,在石英衬底上以Au为缓冲层,Zn4(OH)2(O2CCH3)6.2H2O为固相源制备ZnO薄膜。SEM和XRD测试ZnO薄膜的微结构,结果表明:相对于SiO2衬底上生长的ZnO薄膜,Au/SiO2衬底上生长的ZnO薄膜具有较好的结晶质量和表面平整度;对制备ZnO薄膜的衬底温度进行了工艺优化,结果表明:500℃时制备的ZnO薄膜颗粒大小均匀,结晶质量较好;通过荧光光谱仪对Au/SiO2衬底上的ZnO薄膜进行光致发光(PL)谱测试,ZnO薄膜在400nm出现紫光发射峰,而没有出现与缺陷相关的深能级发射峰,表明ZnO薄膜具有较好的结晶质量。  相似文献   

16.
A simple and inexpensive spray pyrolysis technique (SPT) was employed for the synthesis of nanocrystalline zinc oxide (ZnO) thin films onto soda lime glass and tin doped indium oxide (ITO) coated glass substrates at different substrate temperatures ranging from 300 °C to 500 °C. The synthesized films were polycrystalline, with a (0 0 2) preferential growth along c-axis. SEM micrographs revealed the uniform distribution of spherical grains of about 80-90 nm size. The films were transparent with average visible transmittance of 85% having band gap energy 3.25 eV. All the samples exhibit room temperature photoluminescence (PL). A strong ultraviolet (UV) emission at 398 nm with weak green emission centered at 520 nm confirmed the less defect density in the samples. Moreover, the samples are photoelectrochemically active and exhibit the highest photocurrent of 60 μA, a photovoltage of 280 mV and 0.23 fill factor (FF) for the Zn450 films in 0.5 M Na2SO4 electrolyte, when illuminated under UV light.  相似文献   

17.
ZnO nanocrystalline films have been prepared on Si(1 0 0) substrate using direct current (D.C) magnetron sputtering technique at room temperature. The thickness of nanocrystalline films almost linearly increased with deposition duration and the sizes of crystalline grains almost kept unchanged. After deposition, thermal annealing was performed at 800 °C in atmosphere for 2 h in order to improve the qualities of ZnO thin films. Scanning electron microscope (SEM) images showed the surface roughness of the films less than 45 nm. X-ray diffraction (XRD) patterns revealed the slight evolution of the crystal structures. Raman scattering spectra confirmed the data obtained from X-ray diffraction measurements.With these ZnO nanocrystalline films, prototypic gas sensors were fabricated. Both sensitivity and response of the sensors to different gases (H2 and CH4) were investigated. A quick response of time, less than 1 second to CH4 gas sensor has been achieved.  相似文献   

18.
ZnO films with morphologies of nanorods, nanowires and nanosheets were grown on F-doped SnO2 glass substrate, which may have potential application in solar cells. X-ray diffraction (XRD) and scanning electron microscopy (SEM) were employed to characterize the structures and morphologies of the as-synthesized samples. The photoluminescence (PL) and the photoelectrochemical properties of ZnO films were also measured. The results showed that ZnO nanorods preferentially oriented along the c-axis and had the largest photocurrent density which is as high as 60 μA/cm2.  相似文献   

19.
Zinc oxide columns have been grown on an MgO-coated silicon (111) substrate by the carbon-thermal evaporation method at 1050 °C. The MgO layer obtained from the substrate pre-dripped in Mg(NO3)2 solution by the use of a dropper can solve the troublesome lattice mismatch problem in the heteroepitaxy and promote the growth of ZnO columns effectively. The as-prepared ZnO structures were characterized by using X-ray diffraction (XRD), field-emission transmission electron microscope (FETEM), selection area electron diffraction (SAED), and photoluminescence (PL) spectrum. The results show that the columns are highly crystalline with the wurtzite hexagonal structure, and grow along the [0001] in the c-axis direction. Photoluminescence (PL) spectra of the as-synthesized microstructures exhibit broad green emission peaks at ∼514 nm. In addition, the growth mechanism of the two ZnO structures is discussed based on the analysis briefly based on the time-dependent experiment.  相似文献   

20.
ZnO thin films were grown on (111) CaF2 substrates by magnetron sputtering at room temperature. Structural and optical properties of the ZnO thin films were studied. XRD analysis showed that the ZnO thin films had the (002) preferential orientation. The transmittance of ZnO thin films was over 80% in the visible range. The optical band gap of the ZnO thin films was 3.26 eV. The optical constants (n,k)(n,k) of the ZnO thin films in the wavelength range 300–1000 nm were obtained by infrared spectroscopic ellipsometry measurement. PL spectra of ZnO thin films showed strong UV near-band-edge emission peak at 376.5 nm and weak visible red emission at 643.49 nm using He–Cd laser as the light source, using a synchrotron radiation light source PL spectra showed three emission peak at 320 nm, 410 nm and 542 nm respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号