首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Crystalline TiO2 films were prepared by unbalanced magnetron sputtering and the structure was confirmed by XRD. An organic layer of 11-hydroxyundecylphosphonic acid (HUPA) was prepared on the TiO2 films by self-assembling, and the HUPA on TiO2 films was confirmed by FTIR analysis. Simultaneously, hydroxyl groups were introduced in the phosphonic acid molecules to provide a functionality for further chemical modification. 2-Methacryloyloxyethyl phosphorylcholine (MPC), a biomimetic monomer, was chemically grafted on the HUPA surfaces at room temperature by surface-initiated atom-transfer radical polymerization. The surface characters of TiO2 films modified by poly-MPC were confirmed by FTIR, XPS and SEM analysis. Platelet adhesion experiment revealed that poly-MPC modified surface was effective to inhibit platelet adhesion in vitro.  相似文献   

2.
TiO2 nanoparticles were self-assembled on three different dimensional nanocarbon (SWCNT, C60 and graphene) surfaces by a uniform thermal reaction. The effective anchoring of TiO2 nanoparticles on the nanocarbon surfaces was characterized by FT-IR, XRD, XPS, TEM, Raman spectroscopy, PL and UV-Vis. By investigating the effect of different carbon nanostructures on TiO2 photocatalyst system, we found that the enhancing photocatalytic activities of nanocarbon/TiO2 (NT) nanocomposites have still related to great adsorbability and effective charge transfer by nanocarbon introduced, however, no more insights can be provided for peculiar properties on different nanostructures, although graphene by itself has an excellent structure and morphology.  相似文献   

3.
Experimental conditions were studied for optimized attachment of 3-aminopropyltriethoxysilane (APTES) onto amorphous, anatase and rutile titanium dioxide (TiO2) surfaces. The attachment process and extent was characterized using X-ray photoelectron spectroscopy (XPS). In particular, the effect of attachment time, silane concentration, reaction temperature and the TiO2 crystalline structure on the growth kinetics of the silane layers was studied. The measurements reveal that typically monolayers are more dense on amorphous than on crystalline TiO2. The results show that critical experimental conditions exist where APTES attachment to the TiO2 surface changes from a monolayer to a multilayer growth mode. The obtained results and parameters to produce optimized APTES layers are of a high practical relevance as APTES attachment often constitutes the initial step for organic modification of TiO2 surface with biorelevant molecules such as proteins, enzymes or growth factors.  相似文献   

4.
Novel graphene–TiO2 (GR–TiO2) composite photocatalysts were synthesized by hydrothermal method. During the hydrothermal process, both the reduction of graphene oxide and loading of TiO2 nanoparticles on graphene were achieved. The structure, surface morphology, chemical composition and optical properties of composites were studied using XRD, TEM, XPS, DRS and PL spectroscopy. The absorption edge of TiO2 shifted to visible-light region with increasing amount of graphene in the composite samples. The photocatalytic degradation of methyl orange (MO) was carried out using graphene–TiO2 composite catalysts in order to study the photocatalytic efficiency. The results showed that GR–TiO2 composites can efficiently photodegrade MO, showing an enhanced photocatalytic activity over pure TiO2 under visible-light irradiation. The enhanced photocatalytic activity of the composite catalysts might be attributed to great adsorptivity of dyes, extended light absorption range and efficient charge separation due to giant π-conjugation system and two-dimensional planar structure of graphene.  相似文献   

5.
The surface properties of nanofibres are of importance in various applications. In this work, electrospun polyamide nanofibres were used as substrates for creating functional nanostructures on the nanofibre surfaces. A RF magnetron sputter coating was used to deposit the functional layer of titanium dioxide (TiO2) onto the nanofibres. Atomic force microscopy (AFM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and environmental scanning electron microscopy (ESEM) were employed to study the topography, grain structure and wetting of the nanofibre surfaces, respectively. The AFM results indicated a significant difference in the morphology of the nanofibres before and after the TiO2 sputter coating. The XRD analysis showed the amorphous structures of the TiO2 deposition layer. XPS spectra reflected the chemical features of the deposited nanostructures. The ESEM observation revealed that the surface wettability of TiO2 sputter coated nanofibres was significantly improved after UV irradiation.  相似文献   

6.
Surface compositional changes were observed for TiO2 single crystal electrodes used for photoelectrolysis of water. Surface stoichiometries of several types of TiO2, SrTiO3 and BaTiO3 electrodes were characterized by XPS and compared with a variety of titanium, titanium oxide and titanium hydride standard materials. Reduction of the electrode surface in a hydrogen atmosphere results in an oxygen deficient surface composition. Photoelectrolysis at current densities of 10–15 mAcm2 for periods up to 8 h appears to return the electrode surface to a nearly stoichiometric oxygen-to-metal ratio. Reduction of the titanium oxide surfaces was also observed by exposure to an argon ion beam. Analysis of the electrode surface by a combination of XPS and ion-sputter profiling was still possible by simultaneous analysis of standard materials.  相似文献   

7.
《Current Applied Physics》2009,9(5):1032-1037
In the present work, TiO2 films deposited on polyethylene terephthalate substrates by dip coating technique were subsequently treated by DC glow discharge plasma as a function of discharge potential. Hydrophilicity of these TiO2 film surfaces was analyzed by contact angle measurements. Atomic force microscopy (AFM) revealed changes in surface morphology of the plasma treated TiO2 films. Modifications in structural and chemical composition of the TiO2 films were detected by X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). The blood compatibility of TiO2 films was studied by in vitro investigation which includes thrombus formation and whole blood clotting time analysis (WBCT). It was found that the plasma treatment results in blood compatibility enhancement attributed to the structural, chemical and morphological properties of the modified film surfaces.  相似文献   

8.
A novel visible-light-driven photocatalyst based on TiO2/carboxylate-rich porous carbon composite (TiO2/CRPC) was successfully synthesized by low temperature carbonization process in air. Sodium gluconate plays a crucial role in the formation of TiO2/CRPC. Different functional groups of sodium gluconate play synergetic roles in the formation of TiO2/CRPC. XRD and Raman spectra studies indicated that there are two different TiO2 crystalline phases existing in TiO2/CRPC, which are anatase and brookite, and the CRPC is amorphous. Via FT-IR and XPS spectra investigations, it was demonstrated that carboxylate group, the ligand-to-metal charge transfer (LMCT) forming functional group, was solidified into the CRPC and form the LMCT complex on TiO2 surface through the fabrication of TiO2/CRPC. Compared with the pure TiO2, TiO2/CRPC exhibit enhanced absorption in the UV and visible light region around 260–600 nm. The strong absorption in the visible light region gives TiO2/CRPC advantages over pure TiO2 for the degradation of organic pollutants. TiO2/CRPC can activate O2 in air under mild conditions and exhibit excellent visible-light-driven photocatalytic activities. However, TiO2/C composite obtained by using glucose instead of sodium gluconate exhibits poor photocatalytic activity, which demonstrated that carboxylate–TiO2 complexes are responsible for the prominent photocatalytic properties of TiO2/CRPC under visible light irradiation.  相似文献   

9.
X-ray photoelectron spectroscopy (XPS) was used to characterise the effects of low energy (<2 eV) argon ion plasma surface modification of TiO2 thin films deposited by radio frequency (RF) magnetron sputter system. The low energy argon ion plasma surface modification of TiO2 in a two-stage hybrid system had increased the proportion of surface states of TiO2 as Ti3+. The proportion of carbon atoms as alcohol/ether (COX) was decreased with increase the RF power and carbon atoms as carbonyl (CO) functionality had increased for low RF power treatment. The proportion of C(O)OX functionality at the surface was decreased at low power and further increase in power has showed an increase in its relive proportion at the surface. The growth of S180 cells was observed and it seems that cells are uniformly spreads on tissue culture polystyrene surface and untreated TiO2 surfaces whereas small-localised cell free area can be seen on plasma treated TiO2 surfaces which may be due to decrease in C(O)OX, increase in CO and active sites at the surface. A relatively large variation in the surface functionalities with no change in the surface roughness was achieved by different RF plasma treatments of TiO2 surface whereas no significant change in S180 cell growth with different plasma treatments. This may be because cell growth on TiO2 was mainly influenced by nano-surface characteristics of oxide films rather than surface chemistry.  相似文献   

10.
M.S. Chen 《Surface science》2007,601(3):632-637
The growth of Au on an ultra-thin, ordered Mo(1 1 2)-(8 × 2)-TiOx, was investigated using scanning tunneling microscopy (STM), low energy ion scattering spectroscopy (LEISS), X-ray photoelectron spectroscopy (XPS), and temperature programmed desorption (TPD). Wetting of the TiOx surface by Au was observed with STM and LEISS, and the ordering of the Au films was atomically resolved with STM. TPD showed that Au binds more strongly to the reduced TiOx film than to bulk TiO2, but more weakly than to the Mo substrate. The Au-TiOx binding energy is greater than Au-Au in bulk Au. The oxidation state of Ti in the TiOx film was deduced by XPS and from the Ti-O phonon shifts relative to bulk TiO2. The TiOx/Mo(1 1 2) film structure and those for the (1 × 1)- and (1 × 3)-Au/TiOx/Mo(1 1 2) surfaces are discussed.  相似文献   

11.
Two kinds of hydrophilic polymers, poly(oxyethylene methacrylate) (POEM) and poly(styrene sulfonic acid) (PSSA), were grafted from TiO2 nanoparticles via the surface-initiated atom transfer radical polymerization (ATRP) technique. Chlorine modified TiO2 nanoparticles (TiO2-Cl), the ATRP initiators, were synthesized by the reaction of -OH in TiO2 with 2-chloropropionyl chloride (CPC). FT-IR, UV-vis spectroscopy and X-ray photoelectron spectroscopy (XPS) clearly showed that the polymer chains were successfully grafted from the surface of TiO2 nanoparticles. The hydrophilically modified TiO2 nanoparticles have a better dispersion in alcohol than unmodified nanoparticles, as revealed by transmission electron microscopy (TEM). It was also found that the polymer grafting did not significantly alter the crystalline structure of the TiO2 nanoparticles according to the X-ray diffraction (XRD) patterns. Grafting amounts were 10% of the weight for both TiO2-POEM and TiO2-PSSA nanoparticles, as determined by thermogravimetric analysis (TGA).  相似文献   

12.
The effect of Cl ions on photooxidation of propylene on TiO2 semiconductor was investigated. Cl/TiO2 catalysts were prepared by annealing Degussa P25 TiO2 in the gas flow of N2 and Cl2 under 100-400 °C. The photocatalytic oxidation of propylene was carried out in a continuous flow system, with the chromatograph to analyze the products on line. The experimental results showed that the activity of Cl/TiO2 catalysts increased as heat-treated temperature decreased. The activity of the sample heat-treated at 100 °C was about two times higher than that of pure TiO2. Moreover, as to TiO2, the main product of the propylene photocatalytic oxidation was CO2, but with Cl/TiO2 catalysts, not only CO2 but also trace CO was determined. The adsorbed species on TiO2 surface before and after reaction were analyzed by X-ray photoelectron spectroscopy (XPS) and thermogravimetric/differential thermal analyses (TG-DTA) coupled to a mass spectrometer (MS). XPS analysis showed that there was Cl absorbed on the Cl/TiO2 surface, and the absorption amount of Cl decreased after the photooxidation reaction of propylene. TG-DTA-MS analysis confirmed chlorine absorbed on the surface of TiO2 in the form of Cl ion. These results illuminated that absorbed Cl on the surface of TiO2 formed a weak physical absorption on TiO2 at low temperature, and subsequently participated in the photooxidation of propylene, finally removed from TiO2 surface.  相似文献   

13.
The sol-gel route was employed to prepare a titania/silica photocatalyst co-doped with boron and ferrum. The microstructure and the optical property of the photocatalyst were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), UV-vis diffusive reflectance spectroscopy (DRS), Fourier transform infrared spectroscopy (FT-IR), and N2 adsorption-desorption isotherm. The decomposition of phenol under visible light irradiation was used as probe reaction to evaluate the photocatalytic activity. The results revealed that the dopants could inhibit phase transformation of TiO2, and that there were intimate molecule-level interactions between titania and silica. The doping boron led to the response to visible light. The doping ferrum, which existed in the form of Fe2O3 and dispersed on the surface of TiO2, increased photoquantum efficiency and resulted in the enhancement of catalytic performance. The photocatalytic activity related to the annealing temperature and component. The synergistic effects of co-doping and intimate interaction between titania and silica were responsible for the increase of photoactivity.  相似文献   

14.
《Surface science》1987,180(1):263-278
TiO2(110) surfaces with controlled oxygen deficiency introduced by 160 eV electron bombardment have been studied by XPS and EELS. Stoichiometry was monitored by the growth of core peaks due to Ti3+ states in XPS. Oxygen desorption is characterised by an initial cross section of 3 × 10−21 cm2 that decreases with increasing oxygen loss, tending toward a limiting composition Ti4O7. The oxygen deficient surfaces display sub-bandgap excitations in electronic EELS, whilst in the vibrational region there is a selective downward shift and attenuation of the highest energy phonon loss. This is attributed to modification of the effective background dielectric constant by the defect excitations. Quantitative consideration of the changes in HREELS leads to an estimate of 0.1 for the oscillator strength of the defect electronic excitations. The high value supports the idea that electrons at oxygen deficient TiO2 surfaces occupy states that are pulled down below the conduction band by polaronic self trapping.  相似文献   

15.
TiO2 was treated by water in an ultrasonic bath, resulting in the enhancement of the photocatalytic activity for the decomposition of methylene blue under UV and visible light irradiation. No change in the crystallinity and optical properties of TiO2 by the H2O-treatment was observed. The X-ray photoelectron spectroscopy (XPS) and FT-IR data revealed that the C impurities were oxidized by this treatment, indicating that the change in the structure of the C impurities plays a pivotal role in the photocatalytic activity of TiO2.  相似文献   

16.
TiO2 thin films, employed in dye-sensitized solar cells, were prepared by the sol-gel method or directly by Degussa P25 oxide and their surfaces were characterized by X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM). The effect of adsorption of the cis-[Ru(dcbH2)2(NCS)2] dye, N3, on the surface of films was investigated. From XPS spectra taken before and after argon-ion sputtering procedure, the surface composition of inner and outer layers of sensitized films was obtained and a preferential etching of Ru peak in relation to the Ti and N ones was identified. The photoelectrochemical parameters were also evaluated and rationalized in terms of the morphological characteristics of the films.  相似文献   

17.
Visible-light-activated Ce-Si co-doped TiO2 photocatalyst   总被引:1,自引:0,他引:1  
To enhance the visible photocatalytic activity and thermal stability of TiO2, Ce-Si co-doped TiO2 materials were synthesized through a nonaqueous method of which the purpose was to reduce the aggregation between TiO2 particles. The obtained materials maintained anatase phase and large surface area of 103.3 m2 g−1 even after calcined at 800 °C. The XPS results also indicated that Si was weaved into the lattice of TiO2, and Ce mainly existed as oxides on the surface of TiO2 particles. The doped Si might enhance surface area and suppress transformation from anatase to rutile, while the doped Ce might cause visible absorption and inhibit crystallite growth during heat treatment. Evaluated by decomposing dye Rhodamine B, visible photocatalytic activity of Ce-Si co-doped TiO2 was obviously higher than that of pure TiO2 and reached the maximum at Ce and Si contents of 0.5 mol% and 10 mol%.  相似文献   

18.
The influences of microwave heating on the phase transformation of titania slag were systematically investigated. The thermal stability, surface chemical functional groups and microstructure of the titania slag before and after microwave heating, at a temperature of 950?°C for 60 min, were also analyzed using thermogravimetry and differential thermal analysis (TG-DSC), Fourier transform infrared spectroscopy (FT-IR) spectrum and scanning electron microscope (SEM), respectively. The TG-DSC analysis revealed that the phase transformation of the titania slag from anatase TiO2 to rutile TiO2 occurred between 750 and 1000 °C. The FT-IR rustles demonstrate that the banding form of Ti4+, Ti3+ and Ti2+ ions and the methyl groups on the surface of the titania slag has changed and a new chemical bond Ti–OH was formed. The results of SEM showed that a large number of regulation rutile TiO2 crystals were found on the surface of the microwave-treated samples and the synthetic rutile has been synthesized successfully using microwave heating.  相似文献   

19.
The most important drawback of the use of TiO2 as photocatalyst is its lack of activity under visible light. To overcome this problem, the surface modification of commercial micro-sized TiO2 by means of high-energy ultrasound (US), employing CuCl2 as precursor molecule to obtain both metallic copper as well as copper oxides species at the TiO2 surface, is here. We have prepared samples with different copper content, in order to evaluate its impact on the photocatalytic performances of the semiconductor, and studied in particular the photodegradation in the gas phase of some volatile organic molecules (VOCs), namely acetone and acetaldehyde. We used a LED lamp in order to have only the contribution of the visible wavelengths to the TiO2 activation (typical LED lights have no emission in the UV region). We employed several techniques (i.e., HR-TEM, XRD, FT-IR and UV–Vis) in order to characterize the prepared samples, thus evidencing different sample morphologies as a function of the various copper content, with a coherent correlation between them and the photocatalytic results. Firstly, we demonstrated the possibility to use US to modify the TiO2, even when it is commercial and micro-sized as well; secondly, by avoiding completely the UV irradiation, we confirmed that pure TiO2 is not activated by visible light. On the other hand, we showed that copper metal and metal oxides nanoparticles strongly and positively affect its photocatalytic activity.  相似文献   

20.
A new inorganic sol-gel method was introduced in this paper to prepare TiO2 thin films. The autoclaved sol with needle-like anatase crystals was synthesized using titanyl sulfate (TiOSO4) and peroxide (H2O2) as starting materials. The transparent anatase TiO2 thin films were prepared on glass slides from the autoclaved sol by sol-gel dip-coating method. A wide range of techniques such as Fourier transform infrared transmission spectra (FT-IR), X-ray diffraction (XRD), thermogravimetry-differential thermal analysis (TG-DTA), scanning electron microscopes, X-ray photoelectron spectroscopy (XPS) and ultraviolet-visible spectrum were applied to characterize the autoclaved sol and TiO2 thin films. The results indicate that the autoclaved sol is flavescent, semitransparent and stable at room temperature. The anatase crystals of TiO2 films connect together to form net-like structure after calcined and the films become uniform with increasing heating temperature. The surface of the TiO2 films contain not only Ti and O elements, but also a small amount of N and Na elements diffused from substrates during heat treatment. The TiO2 films are transparent and their maximal light transmittances exceed 80% under visible light region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号