首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Using the characteristics of silica sol dispersing well in water and easy formation of silica gel when the silica sol is heated, by mixing a system of concentrated natural rubber latex and silica sol, the silica sol can in-situ generate SiO2 particles when heated. After coagulation of the mixed system, natural rubber/nanosilica composites C(NR/nSiO2) were obtained. The composites C(NR/nSiO2) and their vulcanizates were studied using a rubber processing analyzer (RPA), dynamic mechanical analysis (DMA), and scanning electron microscopy (SEM). The influence of silica contents on the C(NR/nSiO2) vulcanizates mechanical properties, cross-linking degree, Payne effect, dissipation factor (tanδ), and the particle size and dispersion of SiO2 in NR were investigated. The results obtained were compared with the NR/SiO2 composites based on traditional dry mixing of bale natural rubber and precipitated silica (white carbon black). The results showed that when using a sulfur curing system with a silica coupling agent (Si69) in C(NR/nSiO2), the vulcanizate had better mechanical properties, higher wet resistance, and lower rolling resistance than those without Si69. In the composites C(NR/nSiO2) and their vulcanizates, the SiO2 particles’ average grain diameter was 60 nm, and the good-dispersion of the in-situ generated SiO2 in the rubber matrix were a significant contribution to the satisfactory properties of C(NR/nSiO2) composites and their vulcanizates.  相似文献   

3.
Ternary composites composed of polyamide 6 (PA6), a mixture of maleated (EPDM-g-MA) with unmaleated ethylene propylene diene terpolymer (EPDM) rubber at weight ratio 80/20 (defined as EPDM-M), and nano-calcium carbonate (nano-CaCO3) were prepared by a two-step compounding route. Sandbag microstructure, in which nano-CaCO3 agglomerates were embedded EPDM-M, were observed by scanning electron microscopy (SEM). Deformation of the composites was studied by video-aided tensile tests during uniaxial tension. The microstructural morphology and interfacial interaction were investigated through SEM and dynamic mechanical analysis (DMA). Compared to PA6/EPDM-M/nano-CaCO3 ternary composites without sandbag microstructure (E2), the microstructural morphology of PA6/EPDM-M/nano-CaCO3 ternary composites with sandbag microstructure (E3) showed that numerous microfibrils and cavitations were formed by simultaneously stretching and debonding of nano-CaCO3 agglomerates and EPDM-M in the sandbag microstructure, which resulted in a higher volume strain and larger quantity of energy dissipation. Additionally, better interfacial interaction between the sandbag microstructure and PA6 matrix in E3 caused a lower α-relaxation temperature and easier external energy transmission than E2 without sandbag microstructure. Consequently, the presence of the sandbag particles in PA6/EPDM-M/nano-CaCO3 ternary composites changed the tensile yield deformation of PA6 from a more deviatoric plasticity to a more dilatational plasticity.  相似文献   

4.
To study the effect of different surface structures on resultant mechanical and rheological properties, nano-CaCO3 particles were treated with isopropyl tri-stearyl titanate (H928), isopropyl tri-(dodecylbenz-enesulfonyl) titanate (JN198), and isopropyl tri-(dioctylpyrophosphato) titanate (JN114). Scanning electron microscopy (SEM) and dynamic mechanic analysis (DMA), carried out to characterize the effective interfacial interaction between the nano-CaCO3 particles and a poly(vinyl chloride) (PVC) matrix, indicated that JN114 treated nano-CaCO3 particles had the strongest interfacial interaction with a PVC matrix, while H928 treated nano-CaCO3 had the weakest. The rheological and mechanical properties of PVC/nano-CaCO3 composites were investigated as a function of surface structure and filler volume fraction. The tensile yield stress and elongation at break decreased with the increasing of calcium carbonate content while tensile modulus increased. PVC filled with JN114 treated nano-CaCO3 had the highest tensile modulus and tensile yield stress, while those filled with H928 treated nano-CaCO3 had the highest elongation at break at the same filler content. The impact strength of PVC/nano-CaCO3 composites increased with the increasing of CaCO3 content, and PVC composites filled with JN198 treated nano-CaCO3 particle had a higher impact strength than those with JN114 or H928 treated, with the value reaching 23.9 ± 0.7 kJ/m2 at 11 vol% CaCO3, four times as high as that of pure PVC. Rheological properties indicated that a suitable interfacial interaction and a good dispersion of inorganic filler in a PVC matrix could reduce the viscosity of PVC/nano-CaCO3 composites. The interfacial interaction was quantitatively characterized by semiempirical parameters calculated from the tensile strength of PVC/nano-CaCO3 composites to confirm the results from the SEM and DMA experiments.  相似文献   

5.
Carbon black (N234) and silica (Vulksail N) with a silane coupling agent Si-69 were chosen as reinforcing fillers in butyl rubber (IIR). The rheological behavior of the IIR compounds and the dynamic mechanical properties of IIR vulcanizates were investigated with a rubber processing analyzer and dynamic mechanical analysis (DMA) to examine the filler dispersion in the rubber matrix and the interaction between filler and matrix. The data indicated that the N234 filled IIR compounds had more filler networks than those filled with silica. Filler networks first appeared at 30 phr N234 and 45 phr silica with silane coupling agent Si-69. The interaction between N234 and IIR was far stronger than that between silica and IIR. However, the silica Vulksail N filled IIR had better wet-grip and lower rolling resistance compared to the carbon black-filled IIR should IIR be chosen as a substitute of styrene-butadiene rubber (SBR) in tire tread. The reinforcing factor, R, R (related to the difference in tan d peak height at Tg for the filled and nonfilled rubbers), also demonstrated that the N234-IIR interaction was stronger than for the silica. IIR with 30 phr N234 exhibited the largest tensile strength, 20.1 MPa, for those vulcanizates examined. The tensile and tear strengths of N234 filled IIR were higher than those of IIR with similar amounts of silica. Thus, it was concluded that N234 is a more active reinforcing filler in IIR than silica (Vulksail N) even with a silane coupling agent (Si-69).  相似文献   

6.
The wet skid resistance (WSR) of SSBR/BR(solution styrene-butadiene rubber/butadiene rubber) composites filled with carbon black, silica, and nano-diamond partly replacing carbon black or silica, respectively, was measured with a portable British Pendulum Skid Tester (BPST). A dynamic mechanical thermal analyzer was used to obtain the viscoelasticity of the composites. A 3D scanning white-light interfering profilometer was used and the scratch test performed to characterize surface roughness and micro-roughness, respectively, of the composites. WSR of the silica-filled composite was better than that of the carbon black-filled one, and further enhancement of WSR was obtained by replacing silica with nano-diamond. Tan δ of the composites at 0 °C, 10 Hz, and tensile strain of 2% did not show good correlation with WSR. The surface roughness of the composites had effects on WSR. The scratch test indicated that the higher the hardness of the filler in the composite, the higher the micro-hardness and the better the WSR. Therefore, the surface micro-hardness of the composites is an important factor affecting WSR, besides viscoelasticity and surface roughness.  相似文献   

7.
The flammability of room temperature vulcanized silicone rubber (RTVSR) composites filled with melamine phosphate (MP) as intumescent flame-retardant additives was characterized by limiting oxygen index (LOI), UL-94 test, and cone calorimeter. In addition, the thermal degradation of the composites was studied using thermogravimetric analysis (TGA). Furthermore, in order to relate to actual application requirements, the comprehensive performance of the RTVSR/MP composites was optimized by adding organic nano-montmorillonite (OMMT) as a partial substitute for the MP. The as-prepared intumescent flame-retardant RTVSR/MP/OMMT nanocomposites were characterized by LOI, UL-94 test, TGA, cone calorimetry, scanning electron microscopy (SEM), and mechanical tests. The residue morphology formed after the burning of the nanocomposites was analyzed by its SEM and digital photographs. The results showed that the flame-retardant nanocomposites filled with 10 phr OMMT and 35 phr MP displayed the best comprehensive performance in terms of the flame retardancy, mechanical properties, and heat stability at low cost. It is expected that the intumescent flame-retardant silicone rubber composites with simultaneously improved flame retardancy, thermal stability, and mechanical properties will meet more requirements of the increasingly complex applications.  相似文献   

8.
The structure of the bound rubber, the 1H NMR (nuclear magnetic resonance) relaxation time, and the crosslink density of the physical network and the glass transition, were studied for solution polymerized styrene-butadiene rubber (SSBR) filled by carbon black, to investigate the effects of carbon black on the chain mobility and dynamic mechanical properties. It was found by 1H NMR analysis that the rubber chains were adsorbed on the surface of carbon black to form physical crosslinks and restrict the mobility of the chains, especially for some high-mobility units such as chain ends. It was calculated, according to the molecular weight between adjacent crosslinks, that the main motion units of the tightly adsorbed chains appeared to be similar in size to the chain segments. The glass transition temperature (T g) obtained by differential scanning calorimetry (DSC) could not be used to judge the effect of carbon black on chain mobility, while the appearance and change of the loss-tangent (tan δ) peak at high temperature in dynamic mechanical thermal spectrometry (DMTS) test showed that there were three chain states: free chains, loosely adsorbed chains, and tightly adsorbed chains. The dynamic rheology test showed that the unfilled SSBR compound had the rheological characteristics of entangled chain networks; however the nonlinear viscoelasticities of the filled SSBR were related to the gradual disentanglement of adsorbed chains and free chains. The peaks in tan δ vs. temperature curves implied that the motion unit size decreased with the increase of bound rubber content, and the modulus vs. temperature curve showed an apparently lower mobility of adsorbed chains than that of free chains through the very low dependence of modulus on temperature for the highly filled compounds. The extremely high tensile modulus of the vulcanizate with 63.6% carbon black at room temperature also implied that the adsorbed chains were in the glass state due to their restriction by the carbon black.  相似文献   

9.
《Composite Interfaces》2013,20(2-3):263-279
The dynamic mechanical properties of treated sisal fiber-reinforced polyester composites fabricated by resin transfer molding (RTM) have been studied with reference to fiber surface modifications, frequency and temperature. The sisal fibers have been subjected to various chemical and physical treatments like mercerization, heating at 100°C, permanganate, benzoylation and vinyl tris(2-ethoxymethoxy) silane to improve the interfacial bonding with isophthalic polyester resin. Results indicated that treatment changed the storage modulus (E′), loss modulus (E″) and damping factor (tan δ) drastically at a wide range of temperature. The E′ value increased for every treatment, and is maximum for the composites fabricated by benzoylated-treated fibers. The T g value obtained from the E″value showed an increase as compared to untreated fiber-reinforced composites. The alkali-treated fiber-reinforced composites showed lower tan δ value. Using Arrhenius' equation the activation energy was calculated and found maximum for the composites fabricated by alkali-treated fiber, which shows good fiber/matrix interactions.  相似文献   

10.
《Composite Interfaces》2013,20(2-3):215-229
The dynamic mechanical thermal properties of carbon fiber-reinforced bismaleimide (BMI) composites processed using polyacrylonitrile(PAN)-based carbon fibers unsized and sized with LaRC PETI-5 amic acid oligomer as interphase material at 150°C, 250°C, and 350°C were investigated by means of dynamic mechanical thermal analysis. It was found that the storage modulus, loss modulus, tan δ and the peak temperature significantly depend on the sizing temperature as well as on the presence and absence of LaRC PETI-5 sizing interphase. The result showed that the carbon fiber/BMI composite sized at 150°C had the highest storage modulus at a measuring temperature of 250°C. The storage modulus decreased with increasing sizing temperature from 150°C to 350°C, being influenced by interdiffusion and co-reaction between the LaRC PETI-5 interphase and the BMI matrix resin. The present result is quite consistent with the interfacial result reported earlier in term of interfacial shear strength and interlaminar shear strength of carbon fiber/BMI composites. It is addressed that in the present composite system the sizing temperature of LaRC PETI-5 interphase critically influences not only the interfacial properties but also the dynamic mechanical thermal properties and its control is also important.  相似文献   

11.
Four miktoarms star-shaped polybutadiene-Sn-poly(styrene-butadiene) rubber (MSS-PB-PSBR) with 1,1-diphenylhexyl at the ends of the arms were prepared by two different coupling techniques. One technique was a one-step technology, from which two miktoarms star styrene-butadiene rubbers, called AMSS-PB-PSBR, were obtained in which the four arm stars had varying ratios of PB:PSBR arms; another was a two-step technology, from which another two miktoarms star styrene-butadiene rubbers, called BMSS-PB-PSBR, were obtained in which all consisted of PB-Sn-(PSBR)3 stars. The molecular structure parameters and morphology-properties of the four MSS-PB-PSBR were determined and studied, and compared with that of a star-shaped styrene-butadiene rubber (S-SSBR)/poly butadiene rubber (PBR) blend. The results showed that the total coupling efficiency (the ratio of the total number of polymer chains (arms) coupled by SnCl4 to that of the total number of polymer chains) of the MSS-PB-PSBR was higher than 60%. However, the coupling efficiency of the polybutadiene arms of BMSS-PB-PSBR was obviously higher than that of the AMSS-PB-PSBR. Compared with the S-SSBR/PBR blend, MSS-PB-PSBR had a more uniform distribution of the PB phase and a smaller phase size of PB. It was found that MSS-PB-PSBR composites filled with carbon black (CB) had a lower Payne effect than the S-SSBR/PBR/CB composite, with the BMSS-PB-PSBR/CB composites being especially lower. The BMSS-PB-PSBR/CB composites had higher mechanical properties and lower rolling resistance than the AMSS-PB-PSBR/CB composites due to the high coupling efficiency of the polybutadiene arms; the results indicated that the two-step technology was better than the one-step technology for preparing the tread material of “green” tires.  相似文献   

12.
Interfacial modification for carbon fiber (CF) reinforced polyarylacetylene (PAA) resin, a kind of non-polar, was investigated. The high carbon phenolic resin was used as coating to treat the surface of CF after oxidation. Atomic force microscopy (AFM) with force modulation mode was used to analyze the interphase of composite. The interlaminar shear strength (ILSS) and mechanical properties of CF/PAA composites were also measured. It was found that the CF/PAA composites treated with oxidation and coating after oxidation had transition area between carbon fiber and PAA resin. The existence of transition area led to the improvement of interfacial performance of composites. Specially, the thickness and stiffness of interphase of composite treated with coating after oxidation were more suitable for CF/PAA composites. Thus, the composite treated with coating after oxidation had the highest value of ILSS and the best mechanical properties.  相似文献   

13.
For styrene-butadiene rubber (SBR) compounds filled with the same volume fraction of carbon black (CB), precipitated silica and carbon–silica dual phase filler (CSDPF), filler-rubber interactions were investigated thru bound rubber content (BRC) of the compounds and solid-state 1H low-field nuclear magnetic resonance (NMR) spectroscopy. The results indicated that the BRC of the compound was highly related to the amount of surface area for interaction between filler and rubber, while the solid-state 1H low-field NMR spectroscopy was an effective method to evaluate the intensity of filler-rubber interaction. The silica-filled compound showed the highest BRC, whereas the CB-filled compound had the strongest filler-rubber interfacial interaction, verified by NMR transverse relaxation. The strain sweep measurements of the compounds were conducted thru a rubber process analyzer; the results showed that the CSDPF-filled compound presented the lowest Payne effect, which is mainly related to the weakened filler network structure in polymer matrix. The temperature sweep measurement, tested by dynamic mechanical thermal analysis, indicated that the glass transition temperature did not change when SBR was filled with different fillers, whereas the storage modulus in rubbery state and the tanδ peak height were greatly affected by the filler network structure of composites.  相似文献   

14.
The wet sliding abrasion and abrasion behavior of carbon black (CB)-filled natural rubber (NR) composites were investigated using a Deutsche Industrie Normen (DIN) abrader and compared to their dry abrasion resistance. The results showed that water tended to lubricate the contact between the rubber and the abrader and thus the abrasion loss was reduced. At different applied loads, the abrasion mechanism of the filled vulcanizates was different. When the applied load was below the turning point, the rubber abrasion was mainly fatigue abrasion and the main factor to influence the abrasion was the dynamic loss factor tanδ of the rubber. When the applied load was above the turning point, the rubber abrasion was mainly pattern abrasion and the main factors to influence the abrasion were the mechanical properties, in particular tensile and tear strength.  相似文献   

15.
A high-performance silicone rubber (SR) composite (denoted as SCT) filled with 5 phr functionalized carbon nanotubes (CNTs) and 40 phr fumed silica (SiO2) was prepared by mechanical blending. The CNTs were functionalized by tetrakis (phenylmethyl)-thioperoxydi (carbothioamide) (TBzTD); it contains four benzene rings that can interact with the CNTs via π–π interactions. Raman spectroscopy and X-ray photoelectron spectroscopy analysis demonstrated the existence of the π-π interactions between the CNTs and the TBzTD. Transmission electron microscopy and scanning electron microscopy confirmed the uniform dispersion of the CNTs in SR matrix and strong interfacial interactions between the SR and the CNTs. The effects of these non-covalently functionalized CNTs on the mechanical properties of the silica filled SR composites were fully investigated. The results showed that the tear strength of the SCT composite with TBzTD functionalized CNTs was significantly improved, by 249%, compared with that of the composite containing only SiO2. An obvious crack deflection occurred in the SCT during the tearing process, resulting in the enhanced tear strength.  相似文献   

16.
交联聚苯乙烯具有优异的电气性能、力学性能和可加工性能,已作为高压绝缘材料得到了重要应用。随着脉冲功率技术向小型化方向发展,对交联聚苯乙烯真空沿面闪络性能提出了更高要求。以苯乙烯为单体,二乙烯基苯为交联剂,偶氮二异丁腈为引发剂,采用超声波分散技术将不同质量分数的云母均匀分散于溶液体系中,通过原位自由基聚合制备出云母/交联聚苯乙烯复合材料。采用红外光谱、电子扫描显微镜等对材料组成和形貌进行了表征,采用短脉冲高压测试平台研究了云母对交联聚苯乙烯真空沿面闪络性能的影响。结果表明,当云母质量分数低于5%时,复合材料中云母为均匀分散状态,随着掺杂量进一步提升,出现了明显的团聚现象;当云母质量分数为3.5%~5%之间时,真空沿面闪络击穿电压和耐电寿命较交联聚苯乙烯得到了明显提升。  相似文献   

17.
The dynamic fatigue behaviors of natural rubber (NR) filled with carbon black (CB) and both nanoclay (NC) and CB at same hardness was evaluated using the stepwise increasing strain test (SIST) and long-term testing. Compared with NR/CB composites, NR/CB/NC nanocomposites exhibited higher fatigue-limited strain, stronger dynamic stress relaxation, and longer compression fatigue life. By examining the fracture morphologies, nonlinear viscoelastic behavior, and hysteresis loss of filled NR, it was found that NR, synergisticly reinforced by NC and CB, exhibited improved anti-fatigue ability than NR filled with CB due to stronger filler–filler interactions between NC and CB (a local filler network) and the high aspect ratio and typical lamellar structure of NC.  相似文献   

18.
研究了导电炭黑40b2填充天然橡胶复合材料的导热性能和力学性能随炭黑体积分数的变化规律,并采用扫描电子显微镜观察了炭黑橡胶体系内部的炭黑分布状况.结果表明,导热性能随炭黑体积分数的变化规律存在类似于导电逾渗现象的导热逾渗现象,逾渗阈值在8.3%~13.63%之间.在逾渗阈值之后,复合材料的拉伸强度下降.炭黑橡胶复合材料...  相似文献   

19.
《Composite Interfaces》2013,20(6):481-499
Atomic force microscopy (AFM) is employed to study the amine-terminated poly (butadiene-co-acrylonitrile) (ATBN) rubber-modified polybenzoxazine resin. Topographic mapping of the fracture surface is performed in conjunction with lateral force microscopy (LFM) and force–distance curve measurements (Fd). Matrix T g reduction is attributed to the dissolved rubber and the increased mechanical damping (tan δ) is derived from the phase-separated rubber. Saturation of the rubber in the matrix is defined at 6 wt% above which the matrix T g is not influenced upon rubber loading. The solubility limit of the reactive rubber in the matrix phase is determined from the fractured surface using LFM. The torsional force analyzed in the matrix phase increases upon the addition of rubber and levels off at 6 wt%. The results provide a direct correlation between bulk properties acquired by DMA and fractured surface probed by AFM. The presence of interphase between the separated rubbery domain and the continuous matrix phase is confirmed and its thickness is quantified from Fd curves. Moreover, it is found that interphase properties exhibit a strong rubber-concentration dependence.  相似文献   

20.
The mechanical properties and morphology of the composites of nylon 6, acrylonitrile-butadiene-styrene (ABS) rubber, and nano-SiO2 particles were examined as a function of the nano-SiO2 content. A mixture with separation and encapsulation microstructures existed in the nylon 6/ABS/nano-SiO2 at lower nano-SiO2 content, and ABS and nano-SiO2 improved the toughness synergistically, while obvious agglomeration appeared at higher nano-SiO2 content and the impact strength decreased. Moreover, the addition of nano-SiO2 particles also affected the dispersion of the rubber phase, resulting in the appearance of smaller rubber particles. The deformation and toughening mechanisms of the composites were also investigated; they resulted from rubber voiding, crack forking, and plastic deformation of the matrix.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号