首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
《Composite Interfaces》2013,20(6):493-502
The formation of stearate on precipitated calcium carbonate (PCC) has been examined. The object of coating the filler surface is to achieve improved mechanical properties in the resulting composite material. The coating of a filler with stearate allows the modification of the energies of interaction, so as to improve dispersion and alter the mechanical properties of the interphase region. In this work, Fourier transform infra-red spectroscopy (FTIR) has been used to characterise the efficiency of stearate formation. X-ray photoelectron spectroscopy (XPS) has been used to estimate the thickness of the stearate coating on the surface of the filler. By using dynamic mechanical analysis (DMTA), a variation in mechanical properties has been demonstrated.  相似文献   

2.
《Composite Interfaces》2013,20(5-7):533-549
This paper investigates the effect of the interphase properties and the interfacial interactions between matrix and filler on mechanical properties of precipitated calcium carbonate (PCC)–polypropylene nanocomposites. PCC particles were coated with stearic acid (SA). The weight ratio of SA on the particles (w SA) ranged from 0 to 0.135 g SA/g PCC. The introduction of PCC particles resulted in an increase in stiffness and yield stress compared with the pristine polymeric matrix and, at the same time, it increased the impact resistance. The maximum improvement in the impact behaviour was achieved for the composites with w SA =0.045 corresponding to the theoretical monolayer ratio. A decrease in interfacial interactions between monolayer coated PCCs and the matrix with respect to the uncoated particles was observed by using a semi-empirical equation developed by Pukànszky. The low degree of interfacial interactions between particulate filler and matrix allows a matrix–particle debonding phenomenon, as shown by scanning electron microscopy analysis. Extensive plastic deformations were evident as well, promoting an improvement in toughness. The thickness of the interphase between particles and matrix was evaluated by using the Shen–Li model which is based on the hypothesis of a non-homogeneous interphase. It results that the thickness increased in the order uncoated < monolayer coated < 3% SA coated ? 13.5% SA coated particles. The thinner and stronger interphase found for the composite with uncoated particles can be explained with the high interaction between matrix and filler and the consequent low mobility of the polymeric chains.  相似文献   

3.
Rice husk is rich in amorphous silica which has found various applications as a filler in rubbers and plastics. In the research described here silica was extracted from rice husk ash in the form of sodium silicate which was used to produced amorphous precipitated silica (PS) and silica aerogel (SA) using a sol – gel process and supercritical drying. These materials were then physically mixed with unsaturated polyester (UP) resin and cured at room temperature to form polymer composites. The experimental results showed that the UP composites with 30% (volume percent) of SA filler had lower density and better thermal insulation than the composites with the same amount of PS. Thermogravimetric analysis (TGA) results showed that the Tonset of the PS and SA composites were slightly delayed by 15 and 10°C, respectively. The tensile stress-strain curves showed that addition of the fillers reduced the tensile strength, but increased the elastic moduli of the UP matrix. PS filled UP composites exhibit higher moduli (higher stiffness) than that of SA filled UP composites. This was due to agglomeration and poor adhesion of the SA particles to the UP matrix while better dispersion was observed for the PS filled composite.  相似文献   

4.
Poly(lactic acid) (PLA)/halloysite composites were prepared using melt compounding followed by compression molding. Maleic anhydride grafted styrene-ethylene/butylene-styrene (SEBS-g-MAH) was used to toughen the PLA composites. The mechanical properties of the PLA composites were studied through tensile, flexural, and impact tests. The thermal properties were characterized by using differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). The fracture surfaces of the composites were assessed by using field emission scanning electron microscopy (FESEM). The impact strength and thermal properties of the PLA/halloysite composites were increased by addition of SEBS-g-MAH.  相似文献   

5.
The aim of the study was to determine thermo-mechanical properties and applicability of sunflower husk waste as a filler for ultra low density polyethylene composites. The post agricultural waste filler was milled and chemically treated with (3-aminopropyl)triethoxysilane (3-APS). The amount of filler used was 5, 10 and 20 wt%. The mechanical and thermal properties of the composites containing unmodified and modified natural fillers were determined in the course of static tensile test, rebound resilience by Schob method, and dynamic mechanic thermal analysis. The influence of filler loading and chemical modification of the filler on the morphology of natural composites was evaluated by SEM analysis.  相似文献   

6.
Polypropylene (PP) composites including various amounts of silica aerogel (SA) microparticles were prepared by melt mixing in an internal mixer. The morphology and microstructure of the prepared composites were investigated by scanning electron microscopy (SEM). Mechanical properties of the samples, including elastic modulus, tensile stress, elongation and stress at break, were measured by tensile tests. In addition, the other mechanical features, including Izod impact strength, hardness and wear resistance, were evaluated and then related to the structure of the PP/SA composites. Furthermore, the thermal characteristics of the composites, such as heat deflection temperature and thermal stability, were studied by thermal gravimetric analysis (TGA). The SEM photographs indicated the satisfactory SA particles dispersion for the compositions of 1% and 3% but agglomeration of the aerogels at higher SA contents. Since the composites became stiffer, the impact and tensile strength decreased. The addition of the SA to the PP matrix yielded harder samples with lower weight loss and coefficients of friction in wear tests. The TGA evaluations confirmed that the presence of SA promoted and upgraded the thermal stability and heat deflection temperature of PP. The thermal results proved the superior potential of PP as an insulator when the SA particles were added.  相似文献   

7.
《Composite Interfaces》2013,20(2-3):143-158
Poly(lactic acid) (PLA)/layered silicate nanocomposites have successfully been prepared using the solution route. Two types of organically modified nanoclays, namely, MEE and MAE have been used. The nanostructure, as observed from wide angle X-ray diffraction, indicates an intercalated hybrid for both PLA–MEE and PLA–MAE, and depends on the type of organic modifier used. Intercalation is higher in PLA–MEE as compared to PLA–MAE system. Crystallite dimensions of nanoclays and nanocomposites have been calculated from the Scherrer equation. Crystallite size of nanocomposites is higher than that of pure nanoclay, which in turn affects the properties of the nanocomposites. Wide angle X-ray diffraction patterns also suggest that PLA and its nanocomposites are predominantly amorphous before annealing but, after annealing, PLA and its nanocomposites are fairly crystalline. The crystallinity of the nanocomposites has decreased in comparison to neat polymer suggesting some sort of interaction between organically modified nanoclay and polymer. The nanohybrids show significant improvement in the thermal properties of the matrix as compared to pristine polymer. The nature of interaction between nanoparticles and polymer is higher in PLA–MEE against PLA–MAE, as evident from the lower value of the heat of fusion in the case of PLA–MEE. The nanoparticles act as nucleating agent, and thereby, control the spherulite dimension of the matrix. The comparison of biodegradation of PLA and its nanocomposites has been studied in several media. Biodegradability of PLA has significantly been enhanced in the presence of nanoclays which has been explained on the basis of amorphous content in the polymer matrix. Finally, the regulated biodegradation has been discussed.  相似文献   

8.
Polylactide (PLA) composites with acrylic impact modifier BPM, i.e., PLA/BPM composites, were produced by the melt blending method. The effects of BPM on the thermal properties, melting behaviors, and dynamic mechanical properties of the PLA/BPMs were investigated by thermogravimetric analysis, differential scanning calorimetry, and dynamic mechanical analysis. Tensile strength, flexural strength, and modulus of the injection molded specimens were measured by an Instron tensile machine. The influence of BPM on the impact strength of injection molded PLA/BPM composites was examined using an impact tester. The morphology of cryofractured surfaces and fracture surfaces of the composites after the tensile and impact testing was also investigated using scanning electron microscope. The test results show that the composites with BPM possess better flexibility when compared with neat PLA. However, the notched Izod impact strength showed improvement only when the BPM content was higher than 15 wt%.  相似文献   

9.
《Composite Interfaces》2013,20(8-9):659-684
Talc, calcium carbonate (CaCO3), and kaolin hold considerable promise in the development of polymer composites for good mechanical properties and stability. Comparative studies on the usage of these minerals as single fillers in polypropylene (PP) have shown varying degrees of reinforcement due to their differences in terms of particle geometry, surface energy and affinity towards the matrix polymer. In this study, comparisons were made in terms of mechanical, thermal and weatherability properties between hybrid-filler PP composites (i.e. PP filled with either talc–CaCO3 or talc–kaolin hybrid filler combinations), with particular attention directed towards the effect of surface modification of the fillers. The talc/CaCO3 hybrid composites have shown exceptional performance in terms of flexural and impact properties. The contribution of talc in the talc–kaolin hybrid composite system has been significant in terms of enhancing the overall tensile and flexural properties. The ability of silane and titanate coupling agents in boosting the resistance of the composites to severe damage and degradation due to natural weathering has been shown.  相似文献   

10.
ABSTRACT

This work investigated the mechanical, physical, morphological, and electrical (volume) resistivity properties of radiation-vulcanized natural rubber latex (RVNRL) with additions of waste eggshell (WES) powder, which contained primarily CaCO3 (calcite). The results showed that increasing gamma irradiation doses from 0 to 30?kGy in 10-kGy increments led to decreases in the swelling ratio and elongation at break but increases in the crosslink density, tensile modulus at 500% elongation, and tensile strength of the composites. The results also suggested that increasing the WES contents from 0 to 2, 4, or 6 parts per hundred parts of rubber by weight (phr) in the composites improved the tensile modulus at 500% elongation, tensile strength, hardness (Shore A), and electrical (volume) resistivity. In addition, after undergoing thermal aging at 70°C for 96?h, the tensile modulus and hardness (Shore A) increased, while the tensile strength and elongation at break decreased. This work also compared the properties of WES/RVNRL with commercial CaCO3/RVNRL samples at the same 4-phr content. The results indicated that both composites had similar tensile properties, implying possible replacement of commercial CaCO3 with WES powder as an effective reinforcing filler in RVNRL.  相似文献   

11.
《Composite Interfaces》2013,20(2-3):169-191
Natural fiber reinforced renewable resource based laminated composites were prepared from biodegradable poly(lactic acid) (PLA) and untreated or surface-treated pineapple leaf fibers (PALF) by compression molding using the film stacking method. The objective of this study was to determine the effects of surface treatment of PALF on the performance of the fiber-reinforced composites. X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FTIR) were used to aid in the analysis. The mechanical properties of the PLA laminated composites were improved significantly after chemical treatment. It was found that both silane- and alkali-treated fiber reinforced composites offered superior mechanical properties compared to untreated fiber reinforced composites. The effects of temperature on the viscoelastic properties of composites were studied by dynamic mechanical analysis (DMA). From the DMA results, incorporation of the PALF fibers resulted in a considerable increase of the storage modulus (stiffness) values. The heat defection temperature (HDT) of the PALF fiber reinforced PLA laminated composites was significantly higher than the HDT of the neat PLA resin. The differential scanning calorimeter (DSC) results suggest that surface treatment of PALF affects the crystallization properties of the PLA matrix. Additionally, scanning electron microscopy (SEM) was used to investigate the distribution of PLA within the fiber network. SEM photographs of fiber surface and fracture surfaces of composites clearly indicated the extent of fiber–matrix interface adhesion. It was found that the interfacial properties between the reinforcing PALF fibers and the surrounding matrix of the laminated composite are very important to the performance of the composite materials and PALF fibers are good candidates for the reinforcement fiber of high performance laminated biodegradable biocomposites.  相似文献   

12.
The present work reports the enhancement of the thermal properties in Ag/diamond matrix composites reinforced with chromium carbide coated diamond particles. The coated diamond particles were characterized by x-ray diffraction, x-ray photoelectron spectroscopy and Raman spectra. The composites were synthesized by spark plasma sintering. The chromium carbide coating on the diamond particles resulted in composites exhibiting improved wettability and strong interfacial bonding between the diamond particles and Ag matrix. The composites with coated diamonds showed a low coefficient of thermal expansion of 8.24 × 10?6/K and a high thermal conductivity of 695 W/mK at 60 % particle volume fraction, which greatly outperformed the composites with uncoated diamonds at the same particle volume fraction. The obtained results are useful for synthesizing Ag/diamond composites with greatly improved thermal performance.  相似文献   

13.
Composites composed of the mixed fibers of L-lactide (LA) grafted sisal fiber (SF-g-LA) and untreated sisal fiber (USF) in a poly (lactic acid) (PLA) matrix were prepared with SF-g-LA/USF fibers ratios of 0, 1:9, 3:7, 5:5, 7:3, 9:1, and 1. The mechanical properties and the interfacial performance of the mixed SF reinforced PLA composites were investigated. The results of the study showed that the introduction of SF-g-LA improved the tensile strength, tensile modulus, flexural strength and flexural modulus of the mixed SF reinforced PLA composites compared with pure PLA or PLA composites with only USF, resulting from the improved interfacial adhesion between SF-g-LA and the PLA matrix. In addition, the introduction of some amount of USF enhanced the reinforcing efficiency of the mixed SF in the composites compared to the PLA composites with only SF-g-LA, owing to the good mechanical properties of USF itself. Furthermore, as for the tensile strength and tensile modulus of the mixed SF reinforced PLA composites, the optimal ratio of SF-g-LA and USF was 7:3, whereas for the flexural modulus of the mixed SF reinforced PLA composites, the optimal mixed ratio of SF-g-LA and USF was 3:7.  相似文献   

14.
Three functional coatings (namely Al-C, Si-P-Al and P-F-Al coating) were fabricated by microarc oxidation method on Ti6Al4V alloy in different aqueous solutions. The microstructure, phase and chemical composition of coatings were investigated using scanning electron microscope, X-ray diffraction and energy dispersive spectroscopy. The interface adhesion failure mode of the coating is revealed by shear, tensile and thermal shock methods. The coatings exhibit high adhesion strength by the quantitative shearing test, registering as 110, 70, and 40 MPa for Al-C, Si-P-Al and P-F-Al coating, respectively. The tensile test of the coated samples shows that microarc oxidation treatment does not significantly deteriorate mechanical properties of substrate titanium alloy. The observations of the coating failure after subjected to the identical tensile elongation of 3.0% are well in agreement with those results of the shear test. The thermal cycle test indicates that all the coatings have good anti-thermal shocking properties.  相似文献   

15.
Ni coated cenosphere composites are successfully fabricated by heterogeneous precipitation method using metal salts, ammonium hydro-carbonate and cenospheres as the raw materials. The cenosphere particles are characterized by scanning electron microscope (SEM)/energy dispersive spectroscopy (EDS), X-ray diffraction (XRD) and vibrating sample magnetometer (VSM) during and after the coating process. All results show that relatively uniform, smooth and compact Ni layer has been successfully coated onto cenospheres under the given conditions, furthermore, the nanometer Ni crystallite has a face-centered cubic structure. Magnetic property of Ni coated cenosphere composites can be adjusted by controlling the synthesis conditions and content of magnetic metal. The low density Ni coated cenosphere composites may be utilized for electromagnetic wave shielding and microwave absorbing materials.  相似文献   

16.
The present work focuses on the investigation of the thermal–mechanical properties of the epoxy composites with hybrid boron nitride nanotubes (BNNTs) and boron nitride nanosheets (BNNSs). The stable dispersions of BNNTs–BNNSs were achieved by a noncovalent functionalization with pyrene carboxylic acid. The resulting epoxy/BNNTs–BNNSs composites exhibited homogeneously dispersed BNNTs–BNNSs and a strong filler–matrix interface interaction. The composites showed a 95 % increase in thermal conductivity and a 57 % improvement in Young’s modulus by addition of only 1 vol. % BNNTs–BNNSs. Meanwhile, the composites also retained a high electrical resistance of pure epoxy. Our study thus shows the potential for hybrid BNNTs–BNNSs to be successfully used as the nanofillers of polymer composites for applications in electrically insulating thermal interface materials.  相似文献   

17.
《Composite Interfaces》2013,20(8-9):701-710
A Zn-ion coated nanosilica filler has been developed and tested as vulcanizing activator and reinforcing filler for poly(epichlorohydrin-co-ethylene oxide-co-allyl glycidyl ether); Hydrin 400. In this study ZnO has been replaced by the Zn-ion coated nanosilica filler with the aim of studying the dual role of this nanofiller. The Zn-ion coated nanosilica filler proved to be a better reinforcing and curing agent than the ZnO added from outside. Poly(epichlorohydrin-co-ethylene oxide-co-allyl glycidyl ether) and ethylene thiourea (NA22) was more reinforcing with high state of cure when Zn-ion coated nanosilica filler was used in presence of mercaptobenzoimidazole, in comparison to the peroxide curative system. However, the peroxide cure system offers better thermal stability. ZnO, when added from outside, is less reinforcing than Zn-ion coated nanosilica filler because of improved elastomer–filler surface interaction.  相似文献   

18.
Graphene—2D carbon—has received significant attention thanks to its electronic, thermal, and mechanical properties. Recently, nano‐graphene (nGr) has been investigated as a possible platform for biomedical applications. Here, a polymer‐coated nGr to deliver drugs to glioblastoma after systemic administration is reported. A biodegradable, biocompatible poly(lactide) (PLA) coating enables encapsulation and controlled release of the hydrophobic anticancer drug paclitaxel (PTX), and a hydrophilic poly(ethylene glycol) (PEG) shell increases the solubility of the nGr drug delivery system. Importantly, the polymer coating mediates the interaction of nGr with U‐138 glioblastoma cells and decreases cytotoxicity compared with pristine untreated nGr. PLA‐PEG‐coated nGr is also able to encapsulate PTX at 4.15 wt% and sustains prolonged PTX release for at least 19 d. PTX‐loaded nGr‐PLA‐PEGs are shown to kill up to 20% of U‐138 glioblastoma cells in vitro. Furthermore, nGr‐PLA‐PEG and CNT‐PLA‐PEG, two carbon nanomaterials with different shapes, are able to kill U‐138 in vitro as well as free PTX at significantly lower doses of drug. Finally, in vivo biodistribution of nGr‐PLA‐PEG shows accumulation of nGr in intracranial U‐138 glioblastoma xenografts and organs of the reticuloendothelial system.  相似文献   

19.
To study the effect of different surface structures on resultant mechanical and rheological properties, nano-CaCO3 particles were treated with isopropyl tri-stearyl titanate (H928), isopropyl tri-(dodecylbenz-enesulfonyl) titanate (JN198), and isopropyl tri-(dioctylpyrophosphato) titanate (JN114). Scanning electron microscopy (SEM) and dynamic mechanic analysis (DMA), carried out to characterize the effective interfacial interaction between the nano-CaCO3 particles and a poly(vinyl chloride) (PVC) matrix, indicated that JN114 treated nano-CaCO3 particles had the strongest interfacial interaction with a PVC matrix, while H928 treated nano-CaCO3 had the weakest. The rheological and mechanical properties of PVC/nano-CaCO3 composites were investigated as a function of surface structure and filler volume fraction. The tensile yield stress and elongation at break decreased with the increasing of calcium carbonate content while tensile modulus increased. PVC filled with JN114 treated nano-CaCO3 had the highest tensile modulus and tensile yield stress, while those filled with H928 treated nano-CaCO3 had the highest elongation at break at the same filler content. The impact strength of PVC/nano-CaCO3 composites increased with the increasing of CaCO3 content, and PVC composites filled with JN198 treated nano-CaCO3 particle had a higher impact strength than those with JN114 or H928 treated, with the value reaching 23.9 ± 0.7 kJ/m2 at 11 vol% CaCO3, four times as high as that of pure PVC. Rheological properties indicated that a suitable interfacial interaction and a good dispersion of inorganic filler in a PVC matrix could reduce the viscosity of PVC/nano-CaCO3 composites. The interfacial interaction was quantitatively characterized by semiempirical parameters calculated from the tensile strength of PVC/nano-CaCO3 composites to confirm the results from the SEM and DMA experiments.  相似文献   

20.
Tough and flexible dielectrics were prepared using graphite (G), a natural and low-cost resource, as filler in polystyrene-b-(ethylene-co-butylene)-b-polystyrene (SEBS) and maleinized SEBS (SEBS-MA) matrices. The disintegration of graphite in submicron particles was accomplished by the shear forces during the melt processing step and it was highlighted by atomic force microscopy. Simultaneous increase of tensile strain, strength and Young's modulus was noticed for SEBS/G and SEBS-MA/G composites compared to unfilled matrices, this remarkable feature being previously reported only for some nanocomposites. Moreover, an exponential variation of the dielectric permittivity with the volume fraction of G was obtained. Higher reinforcing efficiency and better dielectric properties were observed in SEBS-MA/G composites, compared to the corresponding SEBS/G composites, due to the stronger polymer–filler interface and better dispersion of graphite. This study brings new insights into nanolevel properties of SEBS composites and it opens new perspectives on high performance composites by using graphite instead of expensive graphene and efficient melt mixing process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号