首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
《Composite Interfaces》2013,20(8):635-646
The influences of alkoxy group number and loading method of silane coupling agents on the mechanical properties of a styrene-butadiene rubber/silica composite were investigated. Mercapto functional silane coupling agents with dialkoxy and trialkoxy structures were used. The pre-treatment method and the integral blend method were compared. Both the fracture stress and modulus at 200% strain were higher in the pre-treatment than in the integral blend for dialkoxy type composites. However, they were higher in the integral blend than in the pre-treatment for trialkoxy-type composites. The interaction between the silane chains on the silica surface and the rubber molecular chains at the interfacial region was estimated by 1H pulse nuclear magnetic resonance spectroscopy using an unvulcanized silica/rubber mixture. It was found that the binding of rubber molecular chains by the silane chains was higher in the pre-treatment system for dialkoxy-type composites, whereas it was higher in the integral blend for trialkoxy-type composites. The reason is proposed as follows: in the pre-treatment for dialkoxy type, a linear silane chain formed in the case of multi-layer coverage. The silane chain entangled with the rubber chain in the interfacial region and improved the reinforcement effect. For the trialkoxy type, a network structure formed using the pre-treatment method, lowering the amount of entanglement. However, in the integral blend for trialkoxy type, the formation of the silane network and the entanglement progressed simultaneously during the preparation process. A well-entangled interfacial region was formed.  相似文献   

2.
A smooth, semitransparent and homogeneous Parylene C/nanosilica composite film was prepared by chemical vapor deposition (CVD). The film was deposited onto the Si substrate coated with a modified nanosilica layer. The nanosilica modified by silane coupling agent have uniform diameters and distribution in the film. The diameter can be roughly estimated in the range of 80-150 nm. The thermal stability of the composite film containing modified silica nanoparticles is better than that of the pure and doped film with commercial nanoparticles, which is ascribed to the strong chemical bonding between the modified nanosilica and Parylene monomers. σe and σs, as elastic limit and yield stress, are about 21.2 MPa and 23.4 MPa of the pure film, compared with 32.1 MPa and 33.4 MPa of the composite film due to the nanosize effect and intensive interface adhesion of silica nanoparticles as reinforcement.  相似文献   

3.
The direct silanation of nanosized superparamagnetic particles (γ-Fe2O3) using 3-aminopropyl triethoxy silane is described. The silanized films are characterized using X-ray photoelectron spectroscopy, diffuse-reflectance Fourier transform infrared spectroscopy and electrokinetics. The silanation is conducted in both organic (toluene) and water solutions to examine the solvent effect on the molecular orientation and packing density of the silanized films. Depending on the solvent, about 74 to 83% of amine groups are found to be un-protonated and remain reactive on the particles. In acidic environment, the films silanized in toluene are more stable than that in water, but both are unstable in basic environment.  相似文献   

4.
《Composite Interfaces》2013,20(7):575-586
Lightweight, high mechanical strength insulating materials exhibiting high resistance to corrosion, solvents and abrasive wear are desired for wire and cable insulation as well as protection. Polyethylenes are generally used for such applications owing to their good electrical insulation properties and being inert to solvents at room temperature. However, their abrasion resistance is quite poor. Hence, in the present work, an attempt has been made to improve the abrasive wear resistance of low-density polyethylene (LDPE) by incorporating hollow microspheres, known as cenospheres, in the base polymer to form composites. These cenospheres are obtained from flyash particles, a thermal power plant waste, and do not tend to increase the weight of the polymer composite when used as a filler. The composites were developed by changing the weight fraction of untreated as well as silane treated cenospheres to the extent of 5 wt%. Tribological characterization of these composites was done in abrasive wear mode by varying the operating parameters, such as speed and sliding distance against silicon carbide paper. It was found that 10 wt% silane treated cenosphere filled LDPE composite showed the maximum wear resistance (~×10?11 m3/N m) among the six composites. However, a further increase in filler concentration decreased the wear resistance. The improvement in wear resistance was supported by scanning electron microscopy and attributed to the strong interaction between silane treated cenosphere and LDPE molecules which resisted the elongation and shearing of polymer chains by the abrasive grits.  相似文献   

5.
Abstract

The broadband dielectric spectroscopy (10?3–106 Hz) is used to study the effect of stress-strain cycles on the dielectric properties of butyl rubber vulcanizates filled with silica. The influence of chemical modification of the surface of the silica by silane coupling agent (Si69) also was investigated. In addition Transmission Electron Microscopy (TEM) and Differential Scanning Calorimetry (DSC) were carried out. Dielectric investigations of the samples were done after stress-strain cycles with maximum elongation 26%, 40%, 60%, and 80% from elongation at break, respectively. It was found that the dielectric properties recovered after storage at room temperature for about one year.  相似文献   

6.
《Composite Interfaces》2013,20(8):685-702
Styrene-butadiene-glycidyl methacrylate terpolymer (GMA-SBR) was synthesized by emulsion polymerization for the fuel efficient tire tread composite. The chemical structure of the GMA-SBR was analyzed using infrared spectroscopy, 1H NMR, gel permeation chromatography, and differential scanning calorimetry. The GMA-SBR/silica composite is the first instance introduced covalent bonds between silica filler and rubber molecules by in-chain modification of styrene-butadiene molecules. After compounding, the curing characteristics, the mechanical and dynamic mechanical properties of the composites were analyzed. The GMA-SBR/silica composite exhibited higher wear resistance of 32.9% and lower rolling resistance of 25.7% than the styrene-butadiene rubber 1721/silica composite. These results are due to the improvement of silica dispersion in the composite as the covalent bonding increased the filler–rubber interaction and the countervailing effects of less filler flocculation. The proposed approach assists in finding a solution to improve the performances of tires for fuel efficiency and the reduction of greenhouse gases from the vehicles.  相似文献   

7.
《Composite Interfaces》2013,20(5-7):495-503
Silica/poly(divinylbenzene) (PDVB) composite particles were synthesized by the dispersion polymerization of divinylbenzene (DVB) with ultrafine silica particles in supercritical carbon dioxide (scCO2). Silica particles of average diameter 130 nm were pretreated with 3-(trimethoxysilyl) propyl methacrylate in order to be well dispersed in CO2 and participated in the polymerization. Random copolymeric dispersant, poly(diisopropylaminoethyl methacrylate-co-heptafluorobutyl methacrylate) was used as a stabilizer to provide sufficient stabilization to latexes in scCO2 and the silica/PDVB composite powder was obtained in high yield from the polymerization. SEM analysis revealed that the composite particles prepared at 5% silica loading ratio and 6% stabilizer concentration with respect to monomer have the average diameter of 1.60 μm with uniform and spherical morphology. The composites were also characterized by FTIR spectroscopy and TGA.  相似文献   

8.
PZT–silica fume cement (PZT–SFC) composites were produced using PZT (at 50% and 60% by volume) and silica fume cement (cement containing silica fume of 5% and 10% by weight). PZT–Portland cement with no silica fume was also produced to allow comparison of the results. Dielectric constants of PZT–SFC composites are found to be higher than that of PZT–PC composite where εr value was found to increase with increasing SF content (εr values of composite with SF at 0%, 5% and 10% are 117, 125 and 178, respectively). PZT–SFC composites were successfully poled and d33 results of PZT–SFC composites (d33 = 18 pC/N) were found to be marginally higher than that of PZT–PC composite (d33 = 17 pC/N). SEM micrograph also shows a dense matrix of SFC hydration product surrounding the PZT particles. From the results, these PZT–SFC composites are therefore promising materials for use in structural applications and should be ideal for high strength structures where SFC is used in the host structure.  相似文献   

9.
Attempts at modification of silica surface with a polymer (natural latex) directly in the course of the precipitation process have been made. The effects of temperature, non-ionic surfactants and silane coupling agent in preparation of poly[cis-isoprene]-coated silica on the precipitation of polymer/silica composites initiated by ammonium salts (NH4Cl, (NH4)2SO4, NH4HCO3), have been studied. The influence of the process parameters on the quality of the silicas obtained and the character of the polymer adsorption on the silica surface has been determined along with the effect of the surface impregnation with natural latex on physicochemical parameters of the silicas (bulk density, capacities to absorb water, dibutyl phthalate and paraffin oil) and their surface structure.  相似文献   

10.
Iron oxide/silica (Fe:Si as 1:10 atomic ratio) composite materials have been prepared by calcination for 3 h at different temperatures (400-900 °C) of xerogel precursor obtained via a formamide modified sol-gel process. The process involved TEOS and iron(III) nitrate, nitric acid and formamide. Genesis of the composite materials from the xerogel precursor has been investigated by TGA, DSC, FTIR, XRD, SEM and EDX. Results indicated that all the calcined composites are mainly composed of amorphous iron oxide dispersed as finely divided particles in amorphous silica matrixes. Nitrogen adsorption/desorption isotherms revealed a reversible type I of isotherms indicative of microporosity. However, high SBET surface area and microsporosity were observed for the calcined composite materials (e.g. SBET = 625 m2 g−1, and Sαs = 556 m2 g−1 for the composite calcined at 400 °C). Formation of the porous texture was discussed in terms of the action of formamide, which enhanced strengthening of the silica gel network during evaporation of the more volatile components within the composite body during the drying process.  相似文献   

11.
侯国付  耿新华  张晓丹  孙建  张建军  赵颖 《中国物理 B》2011,20(7):77802-077802
A series of hydrogenated silicon thin films with varying silane concentrations have been deposited by using very high frequency plasma enhanced chemical vapor deposition (VHF-PECVD) method. The deposition process and the silicon thin films are studied by using optical emission spectroscopy (OES) and Fourier transfer infrared (FTIR) spectroscopy, respectively. The results show that when the silane concentration changes from 10% to 1%, the peak frequency of the Si—H stretching mode shifts from 2000 cm - 1 to 2100 cm - 1, while the peak frequency of the Si—H wagging—rocking mode shifts from 650 cm - 1 to 620 cm - 1. At the same time the SiH*/Hα intensity ratio in the plasma decreases gradually. The evolution of the infrared spectra and the optical emission spectra demonstrates a morphological phase transition from amorphous silicon (a-Si:H) to microcrystalline silicon (μc-Si:H). The structural evolution and the μc-Si:H formation have been analyzed based on the variation of Hα and SiH* intensities in the plasma. The role of oxygen impurity during the plasma process and in the silicon films is also discussed in this study.  相似文献   

12.
《Composite Interfaces》2013,20(3-4):231-242
Three commercially available adhesion promoters based on silanes were used to modify montmorillonite. The short and highly reactive 3-aminopropyltrimethoxysilane (APS) is not able to expand the silicate layers. 3-(2-aminoethyl)aminopropyltrimethoxysilane (AEAPS) and 3-(6-aminohexyl)aminopropyltrimethoxysilane (AHAPS) can be used for a cation exchange reaction in montmorillonite, but the layer distance in the modified clay material is rather low, especially for AHAPS. So mixtures with surfactants were used to modify montmorillonite. With dimethyldistearylammonium chloride as comodifier three ways of preparation of silanized organoclay were tested. Two of them lead only to a rather low content of silane adhesion promoter according to elemental analysis. After compounding with PP-g-MA a reaction of the primary amino group of the silane with PP-g-MA can be shown by IR-spectroscopy. Some samples were made in an amount sufficient for preparing composites on a Berstorff extruder and specimens were made by injection moulding. These were tested according to CAMPUS conditions showing increased mechanical properties in comparison to not silanized montmorillonite nanocomposites, although TEM pictures prove a worse distribution of clay.  相似文献   

13.
Catalytic chemical vapor deposition (CVD) grown multi-walled carbon nanotubes (MWNTs) are treated with HF and deionized water and are then placed into alumina ceramics for improvement of both electrical conductivity and mechanical properties. In particular, an alternating current (ac) electric field is applied during the coagulation of the alumina slurries to induce the formation of aligned MWNT networks in the alumina matrix. The coagulated alumina matrix composite bases filled with 2 wt. % ac electric field-induced aligned MWNTs, are then sintered by hot pressing. The electrical conductivities of the prepared composites in directions both parallel and perpendicular to the MWNTs alignment, reach values of 6.2×10-2 S m-1 and 6.8×10-9 S m-1, respectively, compared with that of 4.5×10-15 S m-1 for pristine alumina ceramics. The fracture toughness and flexing strengths of the prepared composites in the two directions are 4.66±0.66 MPa m0.5, 390±70 MPa, and 3.65±0.46 MPa m0.5, 191±5 MPa, respectively, compared with 3.78±0.66 MPa m0.5 and 302±50 MPa for pristine alumina, 4.09±0.15 MPa m0.5 and 334±60 MPa for alumina filled with 2 wt. % MWNTs prepared without the effect of an electric field, respectively. The results indicate that the electric field leads to anisotropic behaviour. The properties of the composites along the direction of the MWNTs alignment are much improved with the addition of a small amount of CVD grown MWNTs. PACS 61.46.Fg; 61.66.Fn  相似文献   

14.
This work reports giant optical nonlinearity of active gain composites containing metal nanoparticles. In the epsilon‐near‐zero regime, the effective index of the composite strongly depends on the magnitude of host material's saturable gain and one can obtain unity‐order nonlinear optical index change for the pump with gain saturation intensity. For pump intensity of about 100 kW/cm2, the nonlinear refractive index (the refractive index change per unit pump intensity) reaches 10?5 cm2/W, which is 6–8 orders‐of‐magnitude larger than the records recently obtained in epsilon‐near‐zero bulk materials. If the gain value of the host medium is slightly larger than a critical value, such large optical nonlinearity can be obtained without loss or even accompanying with amplification. The proposed materials also have the advantage of wide tunability of operating wavelength range from visible to infrared by changing the gain value of the host and the shape parameters and filling factors of metal nanoparticles.  相似文献   

15.
Experiments conducted in an industrial tubular low pressure chemical vapor deposition (LPCVD) reactor have demonstrated the reproducibility and spatial uniformity of silicon nanodots (NDs) area density and mean radius. The wafer to wafer uniformity was satisfactory (density and radius standard deviations <10%) for the whole conditions tested except for low silane flow rates, high silane partial pressures and short run durations (<20 s). Original synthesis conditions have then been searched to reach both excellent wafer to wafer uniformities along the industrial load of wafers and high NDs densities. From previous results, it was deduced that the key was to markedly increase run duration in decreasing temperature and in increasing silane pressure. At 773 K, run durations as long as 180 and 240 s have thus allowed to reach NDs densities respectively equal to 9 × 1011 and 6.5 × 1011 NDs/cm2 for the two highest silane pressures tested in the range 60-150 Pa.  相似文献   

16.
《Composite Interfaces》2013,20(2):125-135
A Fourier Transform Infrared (FTIR) analysis using Fresnel Attenuated Total Reflectance (ATR) was performed on silica-filled cis-1,4-polyisoprene. Silica filler's detrimental effects on zinc-activated cure systems has been well documented. The silane coupling agent bis-(y-triethoxysilylpropyl)-tetrasulfide (Si-69) and polyethylene glycol (PEG) are industry standards used to offset the interactions caused by reaction between silica and the zinc-activated cure system. By adding PEG, it was found that the interaction peaks at 1040 and 1017 cm-1 caused by the adsorption of natural rubber (NR) onto the surface of the silica were not formed. Also, by monitoring the zinc stearate peak at 1540 cm-1, both Si-69 and PEG were found to reduce the soluble zinc ion reaction with the silica surface. Supporting evidence from the rheometer curves also shows that the additives reduce the cure retardation effects of the silica filler.  相似文献   

17.
We investigated the adsorption of the l-lysine (200 mmol) molecule to a silanized SiO2 surface as a function of the pH value. The SSC (Spraying Spin Coating) method [Cherkouk et al., J. Colloid Interf. Sci. 337 (2009) 375-380] was applied to functionalize the SiO2 surface by using the (3-aminopropyl)trimethoxysilane (APMS) as coupling agent with a NH2 functional group. We adsorbed lysine molecules to the silane film for pH-values of 2.5, 7.5, 8.7, 9.5 and 13, which correspond to the di-cationic, cationic, zwitterinonic (pH 8.7 and 9.5) and the anionic charge state of lysine, respectively. The infrared spectroscopy is not suitable to investigate the system because the NH3+ signal at 1600 cm−1 originating from the silane film overlaps with the infrared signal of the deprotonated carboxyl group of the lysine molecule. X-ray photoelectron spectroscopy (XPS) was used to measure the binding energies C 1s and N 1s as function of the pH value. This pH change affects the charge state which was fitted in the XPS spectra to obtain the optimal adsorption conditions at pH 7.5 of the lysine to the functionalized SiO2 surface.  相似文献   

18.
《Composite Interfaces》2013,20(5-7):603-614
In this study composites of high density polyethylene (HDPE) with various SiO2 content were prepared by melt compounding using maleic anhydride grafted polyethylene (PE-g-MAH) as a compatibilizer. The composites containing 2, 4 and 6% by weight of SiO2 particles were melt-blended in a co-rotating twin screw extruder. In all composites, polyethylene-graft-maleic anhydride copolymer (PE-g-MAH, with 0.85% maleic anhydride content) was added as a compatibilizer in the amount of 2% by weight. Morphology of inorganic silica filler precipitated from emulsion media was investigated. Mechanical properties and composite microstructure were determined by tensile tests and scanning electron microscopy technique (SEM). Tensile strength, yield stress, Young's modulus and elongation at break of PE/SiO2 composites were mainly discussed against the properties of PE/PE-g-MAH/SiO2 composites. The most pronounced increase in mechanical parameters was observed in Young's modulus for composites with polyethylene grafted with maleic anhydride. The increase in the E-modulus of PE/PE-g-MAH/SiO2composites was associated with the compatibility and improvement of interfacial adhesion between the polyethylene matrix and the nanoparticles, leading to an increased degree of particle dispersion. This finding was verified on the basis of SEM micrographs for composites of PE/PE-g-MAH/4% by weight of SiO2. The micrographs clearly documented that addition of only 2 wt% of the compatibilizer changed the composite morphology by reducing filler aggregates size as well as their number. Increased adhesion between the PE matrix and SiO2 particles was interpreted to be a result of interactions taking place between the polar groups of maleic anhydride and silanol groups on the silica surface. These interactions are responsible for reduction of the size of silica aggregates, leading to improved mechanical properties.  相似文献   

19.
The wet skid resistance (WSR) of SSBR/BR(solution styrene-butadiene rubber/butadiene rubber) composites filled with carbon black, silica, and nano-diamond partly replacing carbon black or silica, respectively, was measured with a portable British Pendulum Skid Tester (BPST). A dynamic mechanical thermal analyzer was used to obtain the viscoelasticity of the composites. A 3D scanning white-light interfering profilometer was used and the scratch test performed to characterize surface roughness and micro-roughness, respectively, of the composites. WSR of the silica-filled composite was better than that of the carbon black-filled one, and further enhancement of WSR was obtained by replacing silica with nano-diamond. Tan δ of the composites at 0 °C, 10 Hz, and tensile strain of 2% did not show good correlation with WSR. The surface roughness of the composites had effects on WSR. The scratch test indicated that the higher the hardness of the filler in the composite, the higher the micro-hardness and the better the WSR. Therefore, the surface micro-hardness of the composites is an important factor affecting WSR, besides viscoelasticity and surface roughness.  相似文献   

20.
We probed four closely spaced rovibrational water vapor absorption transitions near =7100 cm-1 using frequency-stabilized cavity ring-down spectroscopy. Room-temperature spectra were acquired for pure water vapor in the Doppler limit and for mixtures containing ≈6.6 μmol mol-1 of water vapor in N2 at total gas pressures ranging from 6.5 kPa to 53 kPa. By measuring Lamb dips for each transition, we demonstrated a resolution of 50 kHz and determined relative transition frequencies with an uncertainty <0.4 MHz over a 10 GHz range. Pressure-induced broadening, collisional narrowing coefficients of the component transitions and line areas were retrieved by fits of model line shapes to the measured spectra. Standard and advanced models were considered including those which incorporated the combined effects of collisional narrowing and speed-dependent line broadening and line shifting. By measuring water vapor concentration with a transfer standard hygrometer, we determined line intensities in terms of measured line areas with a combined relative uncertainty of 0.6%. PACS 33.20.-t; 33.70.Jg; 33.70.Fd; 42.62.Fi  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号