首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
《Composite Interfaces》2013,20(6):577-587
An acrylic copolymer, with PEG branches intercalated in the gallery of sodium montmorillonite (Na-MMT), was applied as a modifier of reactive hot melt polyurethane adhesive (RHA). The adhesion properties showed that the acrylic copolymer can effectively improve the initial bond strength and reduce the set time of RHA. The effects of the acrylic copolymer on the rheological and tensile properties of RHA were also examined.  相似文献   

2.
The shear and extensional rheology of polypropylene (PP)/organoclay nanocomposites in the presence of various maleic anhydride grafted polypropylene (PP-g-MA) compatibilizer concentrations were investigated. The PP nanocomposites were prepared via direct melt intercalation in an internal mixer. The structures of the nanocomposites were characterized by X-ray diffraction (XRD) and scanning electron microscopy. It was found that both the compatibilized and uncompatibilized nanocomposites could form an intercalated structure. However, the organoclay particles can disperse well only in the compatibilized systems. The linear viscoelastic properties, including the storage modulus G′ and complex viscosity η* were very sensitive to the microstructure of the nanocomposites. The extensional viscosities of PP nanocomposites were enhanced under a low deformation rate with increasing compatibilizer content and displayed a lack of superposition for different strain rates. It was proposed that the lack of superposition might originate from the formation of a three-dimensional organoclay network, which decreased in its complexity and strength as the deformation rate increased.  相似文献   

3.
Poly(trimethylene terephthalate) (PTT)/poly(ethylene-octene) POE-g-MA/organoclay ternary nanocomposites were prepared using melt blending in order to simultaneously improve the toughness and stiffness of PTT. The phase morphology and dispersion of organoclay were characterized by scanning electron microscope (SEM), X-ray diffractometer (XRD), and transmission electron microscopy (TEM). The melt rheological behavior of the ternary nanocomposites was determined by plate/plate rheological measurements. XRD and TEM analysis indicated that the ternary nanocomposites contained exfoliated nanoparticle when a small amount of organoclay (1 part per hundred) was added. The high aspect ratio of the organoclay platelets induced the average size of the dispersed domain to become smaller. Melt rheological studies revealed that the ternary nanocomposites exhibited strong shear thinning behavior and showed good processability.  相似文献   

4.
《Composite Interfaces》2013,20(2-3):299-310
Polypropylene (PP) ionomers were obtained by the neutralization of maleic anhydride groups in a maleated PP of which maleic anhydride content was 1 wt%; these were studied as vehicle resins for the masterbatches of an organoclay for PP nanocomposites. PP/clay nanocomposites were prepared by melt mixing of PP with the masterbatches employing a twin screw extruder. Intercalation and/or exfoliation of the organoclay in the PP nanocomposites were observed. It was found that the PP nanocomposite prepared with the masterbatch of an organoclay and the PP ionomer obtained by 75% neutralization of maleic anhydride groups in the maleated PP showed the largest improvement in dispersion of organoclay. Very large increase of Young's modulus was observed in the nanocomposites with the PP ionomer obtained by 75% neutralization of maleic anhydride groups in the maleated PP. The improvements in the dispersion and mechanical properties were attributed to strong interactions between ionic groups of the PP ionomer and ionic surfactants of the organoclay.  相似文献   

5.
Nanocomposites of two different grades of polyamide 6 (PA6) with organically modified nanoclay were prepared via melt compounding in a twin‐screw extruder. The rheological behavior, morphology and mechanical properties of the nanocomposites were studied using a capillary rheometer, x‐ray diffraction (XRD), tapping‐mode atomic force microscopy (AFM), and tensile and flexural tests. XRD patterns indicate that the organically modified layered silicate was well dispersed in the PA6 matrix. From the AFM images the surface roughness of PA6 slightly increases with addition of organoclay. The rheological studies showed that the prepared nanocomposites have shear thinning behavior, obeying the power law equation. Addition of organoclay increases the shear stress and shear viscosity. At high rate of shear deformation the viscosity of nanocomposites are comparable to those of the pure polyamides. The activation energy of flow decreases with increasing nanoclay content. For most of the prepared nanocomposites the activation energy values increase with increasing shear rate. The tensile strength and flexural modulus and strength of the nanocomposites increase with increase of nanoclay content, but the extension at yield decreases with increasing clay loading.  相似文献   

6.
Formation of an adhesive contact between a polymer melt (or solution) and reinforcing fibers is considered from the viewpoint of kinetics. A two-stage model of this process has been proposed, and an expression for the interfacial bond strength as a function of time and temperature is derived. Experimental data on bond strength in adhesive joints between thermoplastic polymers and reinforcing fibers formed under various conditions were obtained, and the concept of activation energy was used to analyze them. Since the process is controlled by the stage having the larger activation energy, the adhesive contact formation between fibers and polymer solutions is governed by the rate of adhesive bonding, whereas that between fibers and polymer melts is governed by the rate of the melt spreading.  相似文献   

7.
Nylon copolymer/clay (NC) nanocomposites were prepared using PA6/66 as a matrix and organoclay as a nanofiller through a two-step melt-compounding method. It was shown that the organoclay flakes were well exfoliated and dispersed in the PA6/66 matrix. With increasing content of organoclay, the apparent shear viscosity and the entrance pressure drop of the NC nanocomposites decreased whereas the corresponding shear activation energy increased, suggesting that the NC nanocomposites were suitable to be used in shear-flow rather than extension-flow related processes. Investigations of the crystallization behaviors of the NC nanocomposites indicated that the organoclay addition was capable of facilitating the γ-form crystal formation, which is suggested to be due to the restriction effect of the organoclay on the PA6/66 chain motion during the crystallization. Compared to the neat PA6/66, the tensile strength and elongation at break of the NC nanocomposites were both enhanced at an appropriate content of the organoclay. In addition, the NC nanocomposites exhibited enhanced barrier properties due to the high specific surface area and the homogeneous dispersion of the organoclay.  相似文献   

8.
High-density polyethylene/organoclay nanocomposites were prepared via melt intercalation in an internal mixer using both a direct mixing and master batching method. Two types of maleic anhydride grafted polyethylene, high-density polyethylene grafted maleic anhydride, and linear low-density polyethylene grafted maleic anhydride, (HDPE-g-MA, LLDPE-g-MA) were used as compatibilizers to enhance the dispersibility of nanoclay in HDPE. Dispersion of organoclay in the nanocomposites was characterized by using X-ray diffraction (XRD), transmission electron microscopy (TEM), and rheological mechanical spectroscopy (RMS). Effects of clay content and degree of clay dispersion on the rheological and tensile properties were also investigated. Furthermore, the effect of order of mixing on the dispersion and distribution of the clay layers was studied. The obtained results showed that organoclay in the nanocomposites were dispersed homogeneously and exfoliated better when HDPE-g-MA and the direct mixing route were used. Although in the master batching method clay intercalated better, clay layers chiefly remain in compatibilizer rich areas. On the other hand, direct mixing was observed to lead to clay particles being dispersed in the HDPE matrix or at the interface of the matrix and compatibilizer and, consequently, better improvement in the tensile modulus was achieved. It was determined that the compatibilizer with the higher miscibility with the matrix was the key factor for achieving better exfoliation of clay sheets.  相似文献   

9.
The main objective of the present work was to study the role of organoclay on the microstructure development and rheological properties of poly(butylene terephtalate)/ epoxy/organoclay (Cloisite® 30B) hybrid nanocomposites. The effects of feeding order and curing of the epoxy were also investigated. The hybrid nanocomposite samples were prepared by melt compounding in a laboratory internal mixer at a temperature of 240°C. The samples were prepared by three feeding routes; (1) simultaneous feeding, (2) PBT/organoclay based master batch feeding, and (3) epoxy/organoclay based master batch feeding. The XRD results evidenced a highly intercalated microstructure for all the samples. The linear viscoelastic results obtained for uncured samples, prepared by the first and second feeding routes, exhibited a pronounced low-frequency nonterminal behavior whose extent was found to be increased in the cured samples. These results suggested that the major part of the nanoclay tactoids and/or platelets were dispersed in the PBT matrix, with higher nanoclay concentration in the sample prepared by the second feeding route. However, the samples prepared through epoxy/organoclay based master batch did not exhibit an appreciable low-frequency solid body response. This suggests that the process of migration of the nanoclay tactoids and/or platelets from epoxy droplets to PBT matrix was the time consuming process due to the high aspect ratio of the nanoclay and the high viscosity of the PBT matrix. From linear and nonlinear viscoelastic measurements, it could be deduced that the curing process does not play an important role in determining the extent of intercalation and dispersion of the nanoclay, but it can enhance the interfacial interaction between the two phases in the nanocomposite.  相似文献   

10.
Nano-structured polyurethane/organoclay composite films were fabricated by dispersing moisture-curable polyurethanes and fatty amine/amino-silane surface modified montmorillonite clay (organoclay) in cyclomethicone-in-water emulsions. Cyclomethicone Pickering emulsions were made by emulsifying decamethylcyclopentasiloxane (D5), dodecamethylcyclohexasiloxane (D6) and aminofunctional siloxane polymers with water using montmorillonite particles as emulsion stabilizers. Polyurethane and organoclay dispersed emulsions were spray coated on aluminum surfaces. Upon thermosetting, water repellent self-cleaning coatings were obtained with measured static water contact angles exceeding 155° and low contact angle hysteresis (<8°). Electron microscopy images of the coating surfaces revealed formation of self-similar hierarchical micro- and nano-scale surface structures. The surface morphology and the coating adhesion strength to aluminum substrates were found to be sensitive to the relative amounts of dispersed polyurethane and organoclay in the emulsions. The degree of superhydrophobicity was analyzed using static water contact angles as well as contact angle hysteresis measurements. Due to biocompatibility of cyclomethicones and polyurethane, developed coatings can be considered for specific bio-medical applications.  相似文献   

11.
Ethylene‐vinyl acetate copolymer (EVA) with 40 wt.% vinyl acetate content (EVA40)/organoclay nanocomposites were prepared using a melt intercalation method with several different clay concentrations (2.5, 5.0, 7.5, and 10.0 wt.%). X‐ray diffraction confirmed the formation of exfoliated nanocomposite in all cases with disappearance of the characteristic peak corresponding to the d‐spacing of the pristine organoclay. Transmission electron microscopy studies also showed an exfoliated morphology of the nanocomposites. Morphology and thermal properties of the nanocomposites were further examined by means of scanning electron microscopy (SEM) and thermo gravimetric analysis (TGA), respectively. Rheological properties of the EVA40/organoclay nanocomposites were investigated using a rotational rheometer with parallel‐plate geometry in both steady shear and dynamic modes, demonstrating remarkable differences with the clay contents in comparison to that of pure EVA40 copolymer.  相似文献   

12.
研究了BGO晶体在不同温度下(在300—1323 K的温度范围)的拉曼光谱及其熔体的高温拉曼光谱,分析了BGO晶体结构随温度变化的规律及BGO熔体的结构特征.随着温度的升高,BGO晶体的拉曼光谱谱峰都不同程度地向低波数方向移动,也存在不同程度的展宽,同时强度减弱.另外,在BGO熔体中存在[GeO4]和[BiO6]的结构基团;但两种结构之间的联键消失,即在熔体中二者是相互独立的生长基元. 关键词: 高温拉曼光谱 熔体 BGO晶体  相似文献   

13.
The diffusion coefficient of radon is a very important factor in estimating the rate of indoor radon inflow. The aim of this work is to develop and assess the potential of radon resistant construction materials in residential buildings. Of late, rice husk ash (RHA) has been used as a component in cement. The X-ray diffraction of RHA indicates that the RHA contains mainly amorphous materials while the X-ray fluorescence analysis shows that the major percentage of it is composed of silica. The amorphous silica present in the RHA is responsible for the pozzolonic activity of the ash. The results of the present study indicate that the RHA when mixed with cement initially reduces radon diffusion coefficient, followed by enhancement when the percentage of RHA is increased above 30% by weight.  相似文献   

14.
An investigation of the segmental dynamics and glass transition behavior of a miscible polymer blend composed of poly(methyl methacrylate) (PMMA) and poly(styrene-ran-acrylonitrile) (SAN) and its melt intercalated nanocomposite by dynamic mechanical analysis is presented. The principle goal was to address the effect of intercalation on local molecular structure and dynamics. The results showed that the intercalation of polymer chains in the galleries of organoclay (Cloisite 30B) led to a lower temperature dependence of the relaxation time (fragility) and activation energy of α-relaxation. Moreover, calculation of the distribution of the segmental dispersion showed a narrower dispersion in the glass transition region so that the Kohlrausch-Williams-Watts (KWW) distribution parameter (βKWW) increased from 0.21 for neat PMMA to 0.34 for the 50/50 PMMA/SAN blend nanocomposite containing 3 wt% organoclay. Furthermore, the relaxation behavior of the blends showed a negative deviation from mixture law predictions based on the responses of the neat PMMA and SAN. These behaviors were attributed to the lack of specific interactions between the blend components (PMMA, SAN, and nanoclay layers) and the less cooperative behavior, i.e., less constraint for segmental relaxation, of the intercalated chains.  相似文献   

15.
The tearing and rheological properties of poly(lactic acid) (PLA)/poly(ethylene glutaric-co-terephthalate) copolyester (FP) blends were investigated using a wide range of blending ratios. The tearing strength values of PLA/FP were always significantly higher than that of the PLA specimen. The melt flow indexer and capillary rheometer analyses indicated that the viscous flow became difficult and the melt strength of PLA was improved after the addition of FP. The interactions between the molecular chains of PLA and FP adds FP branching and lengthens the macromolecular chains and the degree of macromolecular entanglement increases. The blends with 5 wt% FP reached the maximum melt strength and minimum flow index n, while the tearing strength approached the maximum level. At higher FP contents, the melt flow properties PLA/FP blends increased and the melt strength decreased, the tearing strength of PLA/FP blends also decreased.  相似文献   

16.
《Composite Interfaces》2013,20(2-3):201-218
Through this work we explored the effect of melt compounding a commercial grade of HDPE with organoclays of different precedence using EMAA as compatibilizing agent on the thermal behavior, barrier properties and biaxial impact response of composites. Morphology was examined by XRD and TEM. Crystalline structure was examined by DSC. Thermal behavior was evaluated by TGA. Barrier properties to low-molecular-weight penetrants were experimentally determined employing a gravimetric technique. Mechanical properties under impact conditions were evaluated by instrumented puncture tests. Intercalated nanocomposites were obtained. Throughout the thermal degradation of the nanocomposites in oxidant atmosphere a charring process of the PE, which is normally a non-char-forming polymer, was observed. The addition of OMMT improves barrier properties due to its contribution to tortuosity path and to the reduction of molecular mobility. Impact properties were only slightly reduced by nanocomposite formation. Results demonstrate that EMAA did not improve exfoliation, but it enhanced polymer–organoclay interactions giving rise to better thermal and permeation properties, without detriment of impact response.  相似文献   

17.
The effectiveness of maleic anhydride grafted ethylene propylene diene monomer rubber (EPDM-g-MAH) as an interfacial compatibilizer in enhancing the extent of interaction between natural rubber (NR) matrix and organoclay (OC) nanolayers, and also the eventually developed microstructure during a melt mixing process, has been evaluated as an alternative material to be used in place of commonly used epoxidized NR with 50 mol % epoxidation (ENR50). The latter usually weakens the processability of the final compound. The curing behavior, rheological, and dynamic mechanical properties of the prepared nanocomposites have been evaluated. Microstructural characterizations revealed better interfacial compatibilization by EPDM-g-MAH than ENR50, which is attributed to the lower polarity of the EPDM-g-MAH and hence more affinity for the NR matrix to be diffused onto the galleries of OC. This was confirmed with transmission electron microscopy (TEM) examination and higher elasticity exhibited by the unvulcanized NR/OC/EPDM-g-MAH nanocomposites in melt rheological measurements. Also, lower damping behavior was observed for the vulcanized NR/OC/EPDM-g-MAH samples. These imply intensified polymer–filler interfacial interaction and hence restricted viscous motions by the NR segments. Vulcanized NR/OC nanocomposites compatibilized with EPDM-g-MAH showed greater enhancements in tensile properties than the sample compatibilized with ENR50.  相似文献   

18.
The bond strength of the oxide film to the titanium substrate and its inherent structural characteristics are very important preconditions for the success of titanium implants. The purpose of this study was to evaluate the micro-morphologies, crystalline structures, and bond strengths of the anodically oxidized films formed on titanium with the variation of electrolytes and applied current densities. In contrast to the specimens produced using sulfuric acid as the electrolyte, those produced using phosphoric acid showed quite different shapes and densities of the pores as the applied current densities were varied. The oxide films anodized in sulfuric acid consisted of anatase and rutile TiO2, whileTiP2O7 was predominantly formed on the Ti surfaces anodized using phosphoric acid as the electrolyte. The oxide films, which did not experience spark deposition showed amorphous shape and their bond strengths were significantly lower than those of the other groups (p < 0.05). Those specimens which experienced initial spark deposition with a low current condition showed the highest bond strengths (34.2 MPa) within each electrolyte sub-set. The growing rates of the oxide film thicknesses in relation to the electric current changes varied according to the type of electrolyte, and the oxide film thickness influenced the bond strength.  相似文献   

19.
Ternary nanocomposites based on polyamide-6, maleated butadiene (core) -acrylonitrile-styrene (shell) rubber particles (PB-g-SAM), and modified montmorillonite (organoclay) were prepared by a twin-screw extruder. The glassy shell of the core-shell particles can act as a barrier which can resist the entrance of clay into the rubber phase. The influence of mixing sequence on the phase morphology and mechanical properties were studied. The microstructure of the ternary nanocomposites was characterized by X-ray diffraction, transmission electron microscopy, and scanning electron microscopy. It was found that the clay in the polyamide nanocomposites was partially exfoliated, exhibiting a mixture of exfoliated structures. The organoclay plates affected the interfacial adhesion between the polyamide-6 and the core-shell particles. The location of the organoclay plates in the blends with different mixing sequences produced differences of the mechanical properties. The results of mechanical testing revealed that the optimum mixing sequence to achieve balanced mechanical properties was mixing the polyamide-6 and organoclay first followed by mixing with the core-shell particles.  相似文献   

20.
Polystyrene (PS)/organoclay nanocomposites were prepared via free radical suspension polymerization. Two kinds of organoclay were used, labeled KT and KD, modified by trimethyloctadecyl ammonium (TM) and dimethyldioctadecyl ammonium (DM) ions, respectively. Nanocomposites containing various amounts of both of the organoclay nanoparticles (1, 3, and 5 wt%) were prepared. The wide angle X-ray diffraction (WAXD) results revealed intercalation in both of the nanocomposites. The greatest improvement in thermal stability of the nanocomposites was achieved with 5 wt% of organo-MMT for both of the clays. The nanocomposite containing 3 wt% of KT organo-MMT showed the greatest improvement of storage modulus. When the organoclay content exceeded 3 wt%, the storage moduli decreased compared to the nanocomposite filled with 3 wt% of the organoclay. D-spacing calculations using Bragg's law and WAXD data showed that the KT and KD nanoparticles were intercalated within the PS matrix, but with different extents of intercalation. The styrene conversions of the as-polymerized nanocomposite samples were obtained by a gravimetric method. The results showed that conversion decreased with incorporation of organoclay in the reaction recipe. Particle size was also increased by increasing nanoclay content.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号