首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A generalized Schrödinger equation containing correction terms to classical kinetic energy, has been derived in the complex vector space by considering an extended particle structure in stochastic electrodynamics with spin. The correction terms are obtained by considering the internal complex structure of the particle which is a consequence of stochastic average of particle oscillations in the zeropoint field. Hence, the generalised Schrödinger equation may be called stochastic Schrödinger equation. It is found that the second order correction terms are similar to corresponding relativistic corrections. When higher order correction terms are neglected, the stochastic Schrödinger equation reduces to normal Schrödinger equation. It is found that the Schrödinger equation contains an internal structure in disguise and that can be revealed in the form of internal kinetic energy. The internal kinetic energy is found to be equal to the quantum potential obtained in the Madelung fluid theory or Bohm statistical theory. In the rest frame of the particle, the stochastic Schrödinger equation reduces to a Dirac type equation and its Lorentz boost gives the Dirac equation. Finally, the relativistic Klein–Gordon equation is derived by squaring the stochastic Schrödinger equation. The theory elucidates a logical understanding of classical approach to quantum mechanical foundations.  相似文献   

2.
Recent fluorescence spectroscopy measurements of single-enzyme kinetics have shown that enzymatic turnovers form a renewal stochastic process in which the inverse of the mean waiting time between turnovers follows the Michaelis-Menten equation. We study enzyme kinetics at physiologically relevant mesoscopic concentrations using a master equation. From the exact solution of the master equation we find that the waiting times are neither independent nor identically distributed, implying that enzymatic turnovers form a nonrenewal stochastic process. The inverse of the mean waiting time shows strong departure from the Michaelis-Menten equation. The waiting times between consecutive turnovers are anticorrelated, where short intervals are more likely to be followed by long intervals and vice versa. Correlations persist beyond consecutive turnovers indicating that multiscale fluctuations govern enzyme kinetics.  相似文献   

3.
A formal but not conventional equivalence between stochastic processes in nonequilibrium statistical thermodynamics and Schrödinger dynamics in quantum mechanics is shown. It is found, for each stochastic process described by a stochastic differential equation of Itô type, there exists a Schrödinger-like dynamics in which the absolute square of a wavefunction gives us the same probability distribution as the original stochastic process. In utilizing this equivalence between them, that is, rewriting the stochastic differential equation by an equivalent Schrödinger equation, it is possible to obtain the notion of deterministic limit of the stochastic process as a semi-classical limit of the “Schrödinger” equation. The deterministic limit thus obtained improves the conventional deterministic approximation in the sense of Onsager-Machlup. The present approach is valid for a general class of stochastic equations where local drifts and diffusion coefficients depend on the position. Two concrete examples are given. It should be noticed that the approach in the present form has nothing to do with the conventional one where only a formal similarity between the Fokker-Planck equation and the Schrödinger equation is considered.  相似文献   

4.
5.
A new approach has been developed to deal with stochastic transport problems in three-dimensional media. It is assumed that the medium consists of randomly distributed lumps of material embedded in a background matrix and in each lump the properties may vary randomly with time. The coefficients for scattering and absorption are represented mathematically by members of a random characteristic set function, which depend on space and time. Different physical situations can be described by different forms and combinations of these set functions. In order to effect a solution of the resulting stochastic transport equation, which may be for photons or neutrons, we make the, a priori, assumption that the functional form for the solution of the transport equation, i.e. the stochastic flux, can be represented by the same mathematical form as the scattering and absorption coefficients (or cross sections), i.e. we introduce a stochastic ansatz. This procedure leads to a set of deterministic equations from which the mean and variance of the flux in space and time can be obtained. For the case of a two-phase medium, either two or four coupled integro-differential equations are obtained for the deterministic functions that arise (depending on the problem) and expressions are given for the mean and variance of the angular flux. There is a close relationship between these equations and those from the Levermore-Pomraning (LP) theory, but the new equations offer an opportunity to deal with more general forms of stochastic processes and combine simultaneously time and space fluctuations. The stochastic characteristics of the medium are defined by the correlation functions which appear in the equations and, by making plausible assumptions about the functional form of these autocorrelation functions, different physical situations can be simulated, according to the structure of the medium. The main contribution of the present work is to include space and time fluctuations simultaneously as a pseudo-dichotomic Markov process.  相似文献   

6.
This work concerns the problem associated with averaging principle for a higher order nonlinear Schrödinger equation perturbed by a oscillating term arising as the solution of a stochastic reaction–diffusion equation evolving with respect to the fast time. This model can be translated into a multiscale stochastic partial differential equations. Stochastic averaging principle is a powerful tool for studying qualitative analysis of stochastic dynamical systems with different time-scales. To be more precise, under suitable conditions, we prove that there is a limit process in which the fast varying process is averaged out and the limit process which takes the form of the higher order nonlinear Schrödinger equation is an average with respect to the stationary measure of the fast varying process. Finally, by using the Khasminskii technique we can obtain the rate of strong convergence for the slow component towards the solution of the averaged equation, and as a consequence, the system can be reduced to a single higher order nonlinear Schrödinger equation with a modified coefficient.  相似文献   

7.
We report on investigations on the consequences of the quasiclassical Langevin equation. This Langevin equation is an equation of motion of the classical type where, however, the stochastic Langevin force is correlated according to the quantum form of the dissipation-fluctuation theorem such that ultimately its power spectrum increases linearly with frequency. Most extensively, we have studied the decay of a metastable state driven by a stochastic force. For a particular type of potential well (piecewise parabolic), we have derived explicit expressions for the decay rate for an arbitrary power spectrum of the stochastic force. We have found that the quasiclassical Langevin equation leads to decay rates which are physically meaningful only within a very restricted range. We have also studied the influence of quantum fluctuations on a predominantly deterministic motion and we have found that there the predictions of the quasiclassical Langevin equations are correct.  相似文献   

8.
The interrelation between the well-known non-Markovian master equation and the new memoryless one used in the previous paper is clarified on the basis of damping theory. The latter equation is generalized to include cases in which the Hamiltonian or the Liouvillian is a random function of time, and is written in a form feasible for perturbational analysis. Thus, the existing stochastic theory in which those cases mentioned above are discussed is equipped with a more tractable basic equation. Two problems discussed in the previous paper, i.e., the random frequency modulation of a quantal oscillator and the Brownian motion of a spin, are treated from the viewpoint of the stochastic theory without such explicit consideration of external reservoirs as was taken in the previous paper.  相似文献   

9.
An integral equation for the average intensity is derived for a simplified model of a stochastic macroinhomogeneous medium in the form of a stochastic field of attenuation and scattering co-efficients. This equation can be solved by the Monte Carlo method. A simulation algorithm is developed, maximally approximating the well-known algorithm for a deterministic medium. As an example, the algorithm is used to calculate the flux of solar radiation transmitted through a cloud layer.Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 9, pp. 103–107, September, 1977.The authors are indebted to G. A. Mikhailov for a discussion and valuable comments as well as to G. M. Krekov for general interest and consultation.  相似文献   

10.
《Physica A》1987,143(3):468-493
A theory of low field resonance and relaxation is formulated on the basis of the time-convolution equation formalism. A fluctuating field is assumed to be stochastic, and in certain cases, exact solutions are obtained in closed analytic form.Relevance to recent μSR experiments on a random magnetic system is discussed.  相似文献   

11.
The onset of collective behavior in a population of globally coupled oscillators with randomly distributed frequencies is studied for phase dynamical models with arbitrary coupling; the effect of a stochastic temporal variation in the frequencies is also included. The Fokker-Planck equation for the coupled Langevin system is reduced to a kinetic equation for the oscillator distribution function. Instabilities of the phase-incoherent state are studied by center manifold reduction to the amplitude dynamics of the unstable modes. Depending on the coupling, the coefficients in the normal form can be singular in the limit of weak instability when the diffusive effect of the noise is neglected. A detailed analysis of these singularities to all orders in the normal form expansion is presented. Physically, the singularities are interpreted as predicting an altered scaling of the entrained component near the onset of synchronization. These predictions are verified by numerically solving the kinetic equation for various couplings and frequency distributions.  相似文献   

12.
We present a pedagogical treatment of the formalism of continuous quantum measurement. Our aim is to show the reader how the equations describing such measurements are derived and manipulated in a direct manner. We also give elementary background material for those new to measurement theory, and describe further various aspects of continuous measurements that should be helpful to those wanting to use such measurements in applications. Specifically, we use the simple and direct approach of generalized measurements to derive the stochastic master equation describing the continuous measurements of observables, give a tutorial on stochastic calculus, treat multiple observers and inefficient detection, examine a general form of the measurement master equation, and show how the master equation leads to information gain and disturbance. To conclude, we give a detailed treatment of imaging the resonance fluorescence from a single atom as a concrete example of how a continuous position measurement arises in a physical system.  相似文献   

13.
李伟  张美婷  赵俊锋 《中国物理 B》2017,26(9):90501-090501
The stochastic bifurcation of a generalized Duffing–van der Pol system with fractional derivative under color noise excitation is studied. Firstly, fractional derivative in a form of generalized integral with time-delay is approximated by a set of periodic functions. Based on this work, the stochastic averaging method is applied to obtain the FPK equation and the stationary probability density of the amplitude. After that, the critical parameter conditions of stochastic P-bifurcation are obtained based on the singularity theory. Different types of stationary probability densities of the amplitude are also obtained. The study finds that the change of noise intensity, fractional order, and correlation time will lead to the stochastic bifurcation.  相似文献   

14.
We examine the effect of dissipation on coherent quantum tunnelling between the two lowest levels of a double-well system using an adjoint equation approach developed previously in the treatment of quantum-optical problems. Dissipation is modelled by a linear coupling to a bath of harmonic oscillators. The high frequency portion of the bath is adiabatically eliminated using a cumulant expansion technique, which generates frequency renormalisation terms. Making a low temperature assumption, an approximate two-level model is developed in the form of three coupled stochastic differential equations. With a decorrelation approximation, the two-level equations can be solved to yield familiar results. However, the adjoint equation also permits the use of direct stochastic simulation as a means of solution, and simulations are carried out for a range of parameters. A comparison with the decorrelation approximation is made.  相似文献   

15.
A linear stochastic equation is considered. As a result of the transformation used in the theory of integral equations for improving the convergence of successive approximations, transformed stochastic equations are obtained. The latter are exact and are equivalent to the original equation. By solving the transformed stochastic equations by the method of small perturbations the conditions are derived for the applicability of the approximate Keller equations for a value of the field averaged over the ensemble, which satisfies the original stochastic equation. As an application, the applicability boundaries of the Dyson equations are estimated in the Foldy and Burre approximation. In the first case it is assumed that the medium consists of Rayleigh scatters, while in the second case it is assumed that the fluctuations of the permeability of the medium are small-scale ones. If the medium is bounded and has the form of a sphere, the applicability condition of the Dyson equations impose an upper constraint on the radius of the sphere which nevertheless may take values that exceed the extinction length.Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika, Vol. 15, No. 1, pp. 66–72, January, 1972.  相似文献   

16.
17.
A new memoryless expression for the equation of motion for the reduced density matrix is derived. It is equivalent to that proposed by Tokuyama and Mori, but has a more convenient form for the application of the perturbational expansion method. The master equation derived from this form of equation in the first Born approximation is applied to two examples, the Brownian motion of a quantal oscillator and that of a spin. In both examples the master equation is rewritten into the coherent-state representation. A comparison is made with the stochastic theory of the spectral line shape given by Kubo, and it is shown that this theory of the line shape can be incorporated into the framework of the present theory.  相似文献   

18.
A stochastic optimal semi-active control strategy for randomly excited systems using electrorheological/magnetorheological (ER/MR) dampers is proposed. A system excited by random loading and controlled by using ER/MR dampers is modelled as a controlled, stochastically excited and dissipated Hamiltonian system with n degrees of freedom. The control forces produced by ER/MR dampers are split into a passive part and an active part. The passive control force is further split into a conservative part and a dissipative part, which are combined with the conservative force and dissipative force of the uncontrolled system, respectively, to form a new Hamiltonian and an overall passive dissipative force. The stochastic averaging method for quasi-Hamiltonian systems is applied to the modified system to obtain partially completed averaged Itô stochastic differential equations. Then, the stochastic dynamical programming principle is applied to the partially averaged Itô equations to establish a dynamical programming equation. The optimal control law is obtained from minimizing the dynamical programming equation subject to the constraints of ER/MR damping forces, and the fully completed averaged Itô equations are obtained from the partially completed averaged Itô equations by replacing the control forces with the optimal control forces and by averaging the terms involving the control forces. Finally, the response of semi-actively controlled system is obtained from solving the final dynamical programming equation and the Fokker-Planck-Kolmogorov equation associated with the fully completed averaged Itô equations of the system. Two examples are given to illustrate the application and effectiveness of the proposed stochastic optimal semi-active control strategy.  相似文献   

19.
A characterization of the unbounded stochastic generators of quantum completely positive flows is given. This suggests the general form of quantum stochastic adapted evolutions with respect to the Wiener (diffusion), Poisson (jumps), or general Quantum Noise. The corresponding irreversible Heisenberg evolution in terms of stochastic completely positive (CP) maps is constructed. The general form and the dilation of the stochastic completely dissipative (CD) equation over the algebra is discovered, as well as the unitary quantum stochastic dilation of the subfiltering and contractive flows with unbounded generators. A unitary quantum stochastic cocycle, dilating the subfiltering CP flows over , is reconstructed. Received: 20 November 1995 / Accepted: 3 September 1996  相似文献   

20.
《Physica A》1988,148(3):581-596
We consider solutions to the telegraph equation describing persistent diffusion on a line under various initial conditions. The first passage time distribution is evaluated in closed form. Biased persistent diffusion is also considered. A direct derivation of the telegraph equation from the stochastic equation for the displacement is presented in an appendix.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号