首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
蒙脱土(MMT)作为一种天然矿物质,在树脂胶粘剂的增强改性方面应用前景广阔。为了探明蒙脱土增强作用机理,本文采用有机蒙脱土改性脲醛树脂,利用傅里叶红外光谱仪(FTIR)和X射线衍射仪(XRD)分析蒙脱土和改性树脂的化学和晶体结构;并制造木质复合材料,采用纳米压痕技术(NI)比较研究复合材料界面区域树脂的纳米力学性能,测定复合材料的宏观胶合强度。FTIR和XRD分析表明,经十六烷基三甲基溴化铵分析纯(CTAB)改性后的蒙脱土在2 929和2 855 cm-1附近出现新的吸收峰,蒙脱土原土中的金属阳离子和有机阳离子实现有效交换,其(001)面强衍射峰向小角度移动,蒙脱土原土纳米片层的间距从1.51 nm增加至2.71 nm,有助于蒙脱土均匀分散于树脂体系中,并与体系中聚合物分子基团发生化学反应。蒙脱土片层的物理填充、化学反应形成的弹性体结构使得胶粘剂在加载过程中可以有效地分散应力,从而有利于提高脲醛树脂的力学性能,有机蒙脱土改性脲醛树脂的微观弹性模量和硬度分别增加了66.9%和24.2%。改性后树脂的耐水性能得到明显改善,木质复合材料的湿胶合强度增加了约97%。  相似文献   

2.
Interfacial adhesion between carbon fiber (CF) and epoxy resin in carbon fiber-reinforced epoxy composite, which was prepared by different heating process such as semiconductor microwave (MW) device and conventional electric oven, has been evaluated quantitatively. The interfacial shear strength (IFSS) between CF and epoxy resin, which was an indicator of adhesion on the interface, was measured by a single fiber fragmentation test. The single fiber fragmentation test showed that the IFSSs of the prepared specimens were different by heating methods. In the case of MW process, the curing reaction of epoxy resin on the CF interface would be progressed preferentially due to the selective heating of CF, resulting that the IFSSs of specimens prepared by MW irradiation were increased by enhancing the output power of MW. However, the IFSSs of the specimens were decreased by excessively high output power because the matrix resin on the CF interface was thermally degraded. As results, by optimizing the MW conditions of output power and irradiation time, the IFSS of the sample cured by MW was increased by 21% as compared to oven-heated one. It was found that the interfacial adhesion between CF and epoxy resin would be improved by the MW-assisted curing reaction on the surface of CF.  相似文献   

3.
《Composite Interfaces》2013,20(7):605-621
The interfacial fracture toughness between semi-crystalline polymers (polyamide/polypropylene) were studied to understand the failure mechanisms at the interface, especially when the interface was reinforced by an in situ compatibilizer. Based on the observation of the interface using scanning electron microscopy and wide angle X-ray spectroscopy, it was revealed that crystalline structure of polypropylene was not affected by the in situ compatibilizer at the interface. The reinforcing mechanism could be qualitatively identified by investigating the evolution of fracture toughness as a function of annealing time and temperature. The adhesion strength increased with the annealing time. Depending on the annealing temperature, the fracture toughness passed a peak value and then reached a plateau after some bonding time. As long as the chain length of the compatibilizer is long enough to form entanglements with the molecules at both bulk sides, the fracture at the interface is decided by the balance between adhesion strength at the interface and cohesive strength in the weak modulus side; the failure locus follows the lower one. Thus, adhesive failure occurred first when the reaction at the interface did not occur long enough to provide high adhesive strength at the interface, but the cohesive failure occurred in the crack propagation side after the adhesive strength value became higher than the cohesive strength value.  相似文献   

4.
杂化溶胶改性紫外光固化胶粘剂的研究   总被引:4,自引:2,他引:4       下载免费PDF全文
 以自制的杂化溶胶对紫外光固化丙烯酸酯胶粘剂进行改性,得到了具有高粘接强度,对丙酮、乙醇、氯仿等具有明显的耐溶剂性的紫外光固化胶粘剂。实验发现:活性稀释剂中含有较多的羟基、羧基时,此胶粘剂对玻璃的粘接强度较高;胶层粘接力随杂化溶胶用量的增加先增大,后减小,当杂化溶胶中的固体质量为光敏树脂的60%时,胶粘剂的剪切强度达到最大(12MPa)。  相似文献   

5.
以自制的杂化溶胶对紫外光固化丙烯酸酯胶粘剂进行改性,得到了具有高粘接强度,对丙酮、乙醇、氯仿等具有明显的耐溶剂性的紫外光固化胶粘剂。实验发现:活性稀释剂中含有较多的羟基、羧基时,此胶粘剂对玻璃的粘接强度较高;胶层粘接力随杂化溶胶用量的增加先增大,后减小,当杂化溶胶中的固体质量为光敏树脂的60%时,胶粘剂的剪切强度达到最大(12MPa)。  相似文献   

6.
目前国内外对脲甲醛肥料肥效的快速评价方法均采用基于脲甲醛水溶性的活度系数法,但不同国家和地区具体的操作规程和技术指标不尽相同,究其原因在于活度系数法的局限性。脲甲醛肥料的养分释放速率与脲甲醛结构有直接的关系,与其在不同温度水溶液中的溶解性没有直接关联,因此从脲甲醛结构入手研究其养分释放更为合理。通过考察傅里叶变换红外光谱评估不同水分、尿素量和甲醛存放时间三个因素下尿素与甲醛产物结构的可行性,以寻求一种新的脲甲醛肥效评价方法。研究了不同反应条件下产物红外吸收光谱图、产物生成量和酸性环境下不同尿素加入量反应产物养分释放间的关系。谱图能够反映出反应过程中不同的水分和尿素加入量及甲醛存放时间对特征基团吸收峰相对强弱产生的细微变化,通过这些变化可以判断脲甲醛组成变化。这些判断能够从产物的量得到印证,同时土培试验的结果也进一步证实通过红外谱图判断的正确性。以上研究结果表明用红外吸收光谱研究脲甲醛结构的细微变化是可行的,如果将脲甲醛红外光谱的细微变化与其在土壤中养分释放情况间建立起相应的数学模型,将为脲甲醛肥料肥效准确、快速评估提供一个新的手段。  相似文献   

7.
《Composite Interfaces》2013,20(7-9):699-713
The kenaf fiber/soy protein resin interface was characterized. The soy protein isolate (SPI) was modified using a polycarboxylic acid, Phytagel® (PH), to make an interpenetrating network-like (IPN-like structure) structure of the resin. The effects of different PH contents on the interfacial properties were characterized using single fiber composite (SFC) tests and optical microscopy. Kenaf fiber strength was characterized using tensile tests. Kenaf fibers were extracted from nonwoven mats. The length of each kenaf fiber was extended by gluing it to long polyethylene filaments on both sides. After drying the glue, dog-bone shaped SFC specimens were prepared using pure and modified SPI resins. The dried SFC specimens were taken out from the mold and hot-pressed (cured) at 120°C. The interfacial shear strength (IFSS) was calculated using the shear-lag analysis. Single fiber tensile tests at different gauge lengths were performed. The average stresses were computed by fitting the data to Weibull distribution. These values were used in the calculation of the IFSS. After the SFC tests, the specimens were observed under the optical microscope to characterize the fiber fracture modes and the region around the fiber fracture. The SFC tests showed that the IFSS is a function of the PH content which controls the resin shrinkage. It was also seen that the interfacial failure mode is also a function of the PH content. These finding were confirmed by the microbead tests in which E-glass fibers were used with the modified SPI resins.  相似文献   

8.
Both untreated and calcined fumed alumina nanoparticles were dispersed into an epoxy-based adhesive at various percentages. The glass transition temperature of the nanofilled adhesives increased up to an optimal filler loading and then decreased, probably due to concurrent and contrasting effects of chain blocking and reduction of the crosslinking degree. Tensile modulus, stress at break, and fracture toughness of bulk adhesive were positively affected by the presence of untreated alumina nanoparticles at an optimal filler content. Mechanical tests on single-lap aluminum bonded joints indicated that untreated alumina nanoparticles markedly improved both the shear strength and fatigue life of the bonded joints. In particular, the shear strength increased by about 60% for an optimal filler content of 1 vol.%, and an adhesive failure mechanism was evidenced for all the tested specimens. Concurrently, a relevant decrease of the equilibrium contact angle with water was observed for nanofilled bulk adhesives. In summary, alumina nanoparticles can effectively improve the mechanical performances of epoxy structural adhesives, both by increasing their mechanical properties and by enhancing the interfacial wettability with an aluminum substrate.  相似文献   

9.
《Composite Interfaces》2013,20(9):873-892
Zirconia nanoparticles were synthesized by a sol–gel route and dispersed into an epoxy base for structural adhesives. Nanoparticles were used as-synthesized or after calcination. Moreover, the effect of silane functionalization was also investigated. According to preliminary tensile mechanical tests on bulk nanocomposite samples, calcined and untreated zirconia nanoparticles were selected for the preparation of adhesives with various filler contents. The glass transition temperature increased up to a filler content of 1 vol% and then decreased, probably due to the concurrent and contrasting effects of chain blocking and reduction of the crosslinking degree. Also tensile modulus, stress at break and fracture toughness of bulk adhesives samples were positively affected by the presence of an optimal amount of zirconia nanoparticles. Mechanical tests on single lap aluminium bonded joints indicated that zirconia nanoparticles led to relevant enhancements of the shear strength of the joints. In particular, the shear strength increased by about 60% for an optimal filler content of 1 vol%, and an adhesive failure mechanism was evidenced for all the tested specimens. Concurrently, a significant decrease of the equilibrium contact angle with water was observed for adhesives containing zirconia nanoparticles. It can therefore be concluded that the addition of zirconia nanoparticles can effectively improve epoxy adhesives, both by increasing their mechanical properties and by enhancing the interfacial wettability with an aluminium substrate.  相似文献   

10.
《Composite Interfaces》2013,20(4):441-451
The influence of interfacial reaction on interfacial performance of carbon fiber/polyarylacetylene resin composites was studied. For this purpose, vinyltrimethoxysilane containing a double bond was grafted onto the carbon fiber surface to react with the triple bond of polyarylacetylene resin. The reaction between polyarylacetylene resin and vinyltrimethoxysilane was proved by reference to the model reaction between phenylacetylene and vinyltrimethoxysilane. Surface chemical analysis by XPS, surface energy determination from the dynamic contact angle, and the interfacial adhesion in composites was evaluated by interfacial shear strength test as well. It was found that vinyltrimethoxysilane, which can react with polyarylacetylene resin, had been grafted onto the carbon fiber surface. Furthermore, because the reaction between polyarylacetylene resin and vinyltrimethoxysilane took place at the interface, the interfacial adhesion in composites was significantly increased, and the improvement of interfacial adhesion was all attributed to the interfacial reaction.  相似文献   

11.
The calcium salt of hexahydrophthalic acid (Hyperform HPN-20E) is an effective nucleating agent for polyethylene which was developed by Milliken Chemical Co., (USA) in recent years. In this paper, the properties and crystallization behaviors of isotactic polypropylene (iPP) in the presence of Hyperform HPN-20E were investigated by using differential scanning calorimetry and polarized optical microscopy. Addition of Hyperform HPN-20E improved the tensile, flexural and optical properties of iPP significantly and increased the crystallization rate of iPP greatly. The nucleation effects were comparable to the nucleation efficiency of a highly effective commercial iPP nucleating agent Hyperform HPN-68. When the addition amount of Hyperform HPN-20E in iPP was 0.2 wt.%, the tensile strength, tensile modulus, flexural strength, and flexural modulus of iPP were increased by 10.81%, 8.65%, 16.67%, and 11.96%, respectively, compared to those of pure iPP; the haze value was decreased by 42.44% and the crystallization peak temperature was increased by 11.2°C. In addition, incorporation of Hyperform HPN-20E in iPP greatly reduced the spherulite size of iPP.  相似文献   

12.
Peel test is an efficient method to assess the performance and characteristics of materials such as adhesives and adhesive tapes. Recent experiments evidenced that the measured adhesive strength is closely related to the shear-induced interfacial slippage near the delamination front due to the concomitant Poisson contraction effect of the adhesive. Based on the experimental observations, a theoretical model is presented in this paper to examine the effect of the shear-induced interfacial slippage in the peel test. The influence of the interfacial slippage, represented by the shear displacement in the cohesive zone, on the fracture energy of decohesive zone is analyzed. An implicit expansion method with a Gauss-Chebyshev quadrature scheme is used to derive the solution. It is found that the length of the slippage zone and the receding contact angle of adhesives are the two most significant contributors to the total fracture energy of the decohesive zone. These results demonstrate that the mechanism of interfacial slippage plays a significant role in the adhesion and peeling behaviors of adhesives.  相似文献   

13.
The influence of roughness on interfacial performances of silica glass/polyarylacetylene resin composites was investigated. In order to obtain different roughness, silica glass surface was abraded by different grits of abrasives and its topography was observed by scanning electron microscopy and atomic force microscopy. At the same time, the failure mechanisms of composites were analyzed by fracture morphologies and the interfacial adhesion was evaluated by shear strength test. The results indicated that shear strength of silica glass/polyarylacetylene resin composites firstly increased and then decreased with the surface roughness of silica glass increased. The best surface roughness range of silica glass was 40-60 nm. The main mechanism for the improvement of the interfacial adhesion was physical interlocking at the interface.  相似文献   

14.
《Composite Interfaces》2013,20(2-3):169-191
Natural fiber reinforced renewable resource based laminated composites were prepared from biodegradable poly(lactic acid) (PLA) and untreated or surface-treated pineapple leaf fibers (PALF) by compression molding using the film stacking method. The objective of this study was to determine the effects of surface treatment of PALF on the performance of the fiber-reinforced composites. X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FTIR) were used to aid in the analysis. The mechanical properties of the PLA laminated composites were improved significantly after chemical treatment. It was found that both silane- and alkali-treated fiber reinforced composites offered superior mechanical properties compared to untreated fiber reinforced composites. The effects of temperature on the viscoelastic properties of composites were studied by dynamic mechanical analysis (DMA). From the DMA results, incorporation of the PALF fibers resulted in a considerable increase of the storage modulus (stiffness) values. The heat defection temperature (HDT) of the PALF fiber reinforced PLA laminated composites was significantly higher than the HDT of the neat PLA resin. The differential scanning calorimeter (DSC) results suggest that surface treatment of PALF affects the crystallization properties of the PLA matrix. Additionally, scanning electron microscopy (SEM) was used to investigate the distribution of PLA within the fiber network. SEM photographs of fiber surface and fracture surfaces of composites clearly indicated the extent of fiber–matrix interface adhesion. It was found that the interfacial properties between the reinforcing PALF fibers and the surrounding matrix of the laminated composite are very important to the performance of the composite materials and PALF fibers are good candidates for the reinforcement fiber of high performance laminated biodegradable biocomposites.  相似文献   

15.
颜面赝复体粘接剂的红外光谱分析   总被引:1,自引:1,他引:0  
传统的颜面赝复体粘接剂按其成分可分为聚丙烯酸酯类和有机硅类。以往对于颜面赝复体粘接剂性能的研究,多为粘接强度的测试,而有关这些粘接剂在粘接过程中的变化研究则较少见。文章测试了两种颜面赝复体粘接剂 (Epithane3及Secure2 Adhesive)在液态、半固态时的红外光谱。结果提示,Epithane3结固过程中有水分和残留氨的挥发,Secure2 Adhesive结固过程中表现为乙酸乙酯挥发。有机硅官能团是有机硅类和硅橡胶的粘接强度比聚丙烯酸酯类高的关键。两种粘接剂红外光谱主要吸收峰的峰位、峰形与结固前相同, 表明结固前后其主要化学成分和基本结构未发生变化。  相似文献   

16.
Castor oil based polyurethane (CO-PU) was first synthesized from castor oil and 4, 4’-diphenyl-methane-diisocyanate (MDI). Then, a series of CO-PU/epoxy (EP) intercross-linked polymer network (ICPN) adhesives for metal substrates were prepared by a sequential method. The functional groups, tack -free time, mechanical properties, adhesive properties, and thermal stability were studied. Fourier transform infrared spectroscopy analysis indicated that an ICPN structure was formed through the introduction of CO-PU into EP. Results of adhesive measurements showed that the maximal value of lap shear strength was achieved at the CO-PU content of 20%. Thermogravimetric analysis results indicated that thermal stability of the adhesive film decreased with increased CO-PU content.  相似文献   

17.
《Composite Interfaces》2013,20(5):443-453
Three different temperature schemes were applied on carbon fiber/epoxy composite to elucidate the effect on interfacial shear strength (IFSS) and inter-laminar shear strength (ILSS). It showed that carbon fiber/epoxy IFSS was significantly influenced by the processing temperature, while ILSS was only slightly changed. Moreover, the mechanical properties revealed no necessary relationship between the micro- and macro-interfacial strengths with the properties of epoxy matrix. Among all the temperature schemes, Pro2 (the one-platform curing scheme with relatively rapid heating rate) produced highest IFSS and ILSS. Fourier transform infrared spectroscopy analysis demonstrated that the sizing agent can chemically react itself and also react with epoxy resin at temperature 180?°C. The resin rheological data showed that different temperature schemes can considerably impact diffusion behavior of the resin molecules. Hence, the highest interfacial strengths for Pro2 scheme were ascribed to large extent of chemical reactions and good inter-diffusion between components, at the interface region.  相似文献   

18.
Adequate stress transfer between the inorganic reinforcement and surrounding polymeric matrix is essential for achieving enhanced structural integrity and extended lifetime performance of fiber-reinforced composites. The insertion of an elastomeric interlayer helps increase the stress-transfer capabilities across the fiber/matrix interface and considerably reduces crack initiation phenomena at the fiber ends. In this study, admicellar polymerization is used to modify the fiber/matrix interface in glass woven fabric composites by forming thickness-controlled poly(styrene-co-isoprene) coatings. These admicellar interphases have distinct characteristics (e.g. topology and surface coverage) depending on the surfactant/monomer ratios used during the polymerization reaction. Overall, the admicellar coatings have a positive effect on the mechanical response of resin transfer molded, E-glass/epoxy parts. For instance, ultimate tensile strength of composites with admicellar sizings improved 50–55% over the control-desized samples. Interlaminar shear strength also showed increases ranging from 18 to 38% over the same control group. Interestingly, the flexural properties of these composites proved sensitive to the type of interphase formed for various admicellar polymerization conditions. Higher surface coverage and film connectedness in admicellar polymeric sizings are observed to enhance stress transfer at the interfacial region.  相似文献   

19.
Effects of γ-ray radiation grafting on aramid fibers and its composites   总被引:2,自引:0,他引:2  
Armos fiber was modified by Co60 γ-ray radiation in the different concentrations’ mixtures of phenol-formaldehyde and ethanol. Interlaminar shear strength (ILSS) was examined to characterize the effects of the treatment upon the interfacial bonding properties of Armos fibers/epoxy resin composites. The results showed that the ILSS of the composite, whose fibers were treated by 500 kGy radiation in 1.5 wt% PF, was improved by 25.4%. Nanoindentation technique analysis showed that the nanohardnesses of the various phases (the fiber, the interface and the matrix) in the composite, whose fibers were treated, were correspondingly higher than those in the composite, whose fibers were untreated. X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared (FT-IR) spectrum confirmed the increase in the polar groups at the fibers’ surface. Atomic force microscopy (AFM) results revealed that the surface of the fibers treated was rougher than that of the fibers untreated. The wettability of the fibers’ surface was also enhanced by the treatment. The conclusion that γ-ray irradiation grafting significantly improved the surface properties of Armos fibers could be drawn.  相似文献   

20.
This paper investigated the application of ZnO nanowires (ZnO NW) to enhance the interfacial strength of glass/epoxy composites. ZnO NW were grown on glass fibers by hydrothermal method, tensile properties of bare and ZnO NW coated fibers were measured by single fiber tensile testing, wettability of fiber with resin was studied by contact angle measurements and finally the interfacial strength and mechanisms were determined by single fiber fragmentation testing of glass/epoxy composites. The surface coverage of ZnO NW on glass fibers was fairly uniform without formation of major clusters. The coating of ZnO NW slightly reduced the tensile strength and improved the tensile modulus of fibers. Wettability tests showed reduction in contact angles for ZnO NW coated fibers because of enhanced wetting and infiltration of epoxy resin into nanowires. In fragmentation testing of microcomposites, smaller and concentrated interfacial debonding zones for ZnO NW coated fibers indicated good stress transfer and strong interfacial adhesion. A new form of crossed and closely spaced stress patterns were observed for nanowires of high aspect ratios. The interfacial strength of ZnO NW coated fibers increased by at least 109% and by 430% on average, which was attributed to the increased surface area and mechanical interlocking provided by ZnO NW.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号