首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 29 毫秒
1.
《Composite Interfaces》2013,20(4):383-393
Two types of SiC fiber tows (Hi-Nicalon? and Hi-Nicalon S?) were coated with stabilized ZrO2 and composited using preceramic polymer impregnation pyrolysis to form SiC/SiCf minicomposites. Properties of the fiber/matrix interface in composites were investigated using the indentation method in which a pyramidal indenter was used to push on an individual fiber and cause sliding at the interface. The interfacial frictional stresses were determined from the force–displacement relation. The composites reinforced by the ZrO2-coated fibers have smaller interfacial frictional stresses than composites reinforced by the initial fibers and show fibers sliding relatively more easily with respect to the SiC matrix.  相似文献   

2.
研究了合金元素Zr对Cu-Sn/Nb界面上Nb3Sn生长动力学的影响。实验表明:在单芯复合材料中加入Zr显著提高了Nb3Sn层的生长速率,层厚与时间的关系显著超过抛物线规律。这些结果不能仅用内氧化生成的ZrO2颗粒使晶粒细化来解释,还必须考虑ZrO2颗粒周围过饱和空位使扩散系数增大等因素。在多芯复合材料中热处理时Cu-Sn基体中Sn量的消耗,显著影响Nb3Sn的生长。考虑了这一因素的Nb3Sn生长动力学修正公式能对实验结果进行解释。 关键词:  相似文献   

3.
Different aspects of thermomechanical fracture of functionally graded materials (FGMs) are considered. Among them are the crack interaction problems in a functionally graded coating on a homogeneous substrate (FGM/H). The interaction between systems of edge cracks is investigated, as well as, how this mutual interaction influences the fracture process and the formation of crack patterns. The problem is formulated with respect to singular integral equations which are referred to the boundary equation methods. The FGM properties are modeled by exponential functions. The main fracture characteristics are calculated, namely, the stress intensity factors, the angles of deviation of the cracks from their initial propagation direction and the critical stresses when the crack starts to propagate. The last two characteristics are calculated using an appropriate fracture criterion. The problem contains different parameters, such as the geometry (location and orientation of cracks, their lengths, and the width of the FGM layer) and material parameters, i.e. the inhomogeneity parameters of elastic and thermal coefficients of the functionally graded material. The influence of these parameters on the thermo-mechanical fracture of FGM/H is investigated. As examples the following real material combinations are discussed: TiC/SiC, Al2O3/MoSi2, MoSi2/SiC, ZrO2/nickel and ZrO2/steel.  相似文献   

4.
Interfacial reactions and their products in oxidized SiC particle-reinforced Al-Mg matrix composites were investigated using X-ray diffraction and Field EmissionScanning Electron Microscopy (FE-SEM). Observation of the interfacial reaction between oxidized SiC particles and aluminum alloys containing Mg showed that nanoparticles of MgO form initially and do not change form when more than 4 wt. % Mg is in the matrix. However, MgO transforms into octahedral MgAl2O4 crystals when less than 2 wt. % Mg is in the matrix .Comparison of the amounts and the sizes of the reaction products MgAl2O4 and MgO between the Al-Mg alloyswith different matrix compositions shows that fewer MgAl2O4 crystals form at the surface of the particles in the 2014Al matrix composite than in the Al-2 wt. % Mg (Al-2Mg) matrix composite. Also, the size of MgAl2O4 in the former composite is greater than that of the latter composite under the same conditions. However, the amount and the size of MgO crystals that form in the Al-4 wt. % Mg (Al-4Mg) matrix composite is almost the same as that of the Al-8 wt. % Mg (Al-8Mg) composite, and the size of MgO changes a little during heat-treatment at elevated temperatures. The amount of the reaction product (either MgO or MgAl2O4) depends on nucleation rates and density of nucleation sites on the oxidized SiC particles at the initial reaction. The more completely the nuclei cover the surface of the oxidized SiC particles, the smaller the resulting size. According to the results, an addition of Mg into the matrix can be used to control the interfacial characteristics in the oxidized SiC/Al composites. Received: 25 January 2001 / Accepted: 26 January 2001 / Published online: 23 May 2001  相似文献   

5.
La2O3 grown by atomic layer deposition (ALD) and thermally grown GeO2 are used to establish effective electrical surface passivations on n-type (1 0 0)-Ge substrates for high-k ZrO2 dielectrics, grown by ALD at 250 °C substrate temperature. The electrical characterization of MOS capacitors indicates an impact of the Ge-surface passivation on the interfacial trap density and the frequency dependent capacitance in the inversion regime. Lower interface trap densities can be obtained for GeO2 based passivation even though a chemical decomposition of the oxidation states occur during the ALD of ZrO2. As a consequence the formation of a ZrGeOx compound inside the ZrO2 matrix and a decline of the interfacial GeO2 are observed. The La2O3 passivation provides a stable amorphous lanthanum germanate phase at the Ge interface but also traces of Zr germanate are indicated by X-ray-Photoelectron-Spectroscopy and Transmission-Electron-Microscopy.  相似文献   

6.
A fiber-reaction zone-matrix three-phase model is developed to evaluate the interfacial fracture toughness of titanium alloys reinforced by SiC monofilaments. Based on fracture mechanics, theoretical equations of GIIc are presented, and the effects of several key factors such as crack length and the interface reaction zone thickness on the critical applied stress necessary for crack growth and interfacial fracture toughness are discussed. Finally, the interfacial fracture toughness of typical composites including Sigma1240/Ti-6Al-4V, SCS-6/Ti-6Al-4V, SCS-6/Timetal 834, SCS-6/Timetal 21s, SCS-6/Ti-24Al-11Nb and SCS-6/Ti-15V-3Cr are predicted by the model. The results show that the model can reliably predict the interfacial fracture toughness of the titanium matrix composites.  相似文献   

7.
We compare aluminide and alumino-silicide composite coatings on niobium using halide activated pack cementation (HAPC) technique for improving its oxidation resistance. The coated samples are characterized by SEM, EDS, EPMA and hardness measurements. We observe formation of NbAl3 in aluminide coating of Nb, though the alumino-silicide coating leads to formation primarily of NbSi2 in the inner layer and a ternary compound of Nb-Si-Al in the outer layer, as reported earlier (Majumdar et al. [11]). Formation of niobium silicide is preferred over niobium aluminide during alumino-silicide coating experiments, indicating Si is more strongly bonded to Nb than Al, although equivalent quantities of aluminium and silicon powders were used in the pack chemistry. We also employ first-principles density functional pseudopotential-based calculations to calculate the relative stability of these intermediate phases and the adhesion strength of the Al/Nb and Si/Nb interfaces. NbSi2 exhibits much stronger covalent character as compared to NbAl3. The ideal work of adhesion for the relaxed Al/Nb and Si/Nb interfaces are calculated to be 3226 mJ/m2 and 3545 mJ/m2, respectively, indicating stronger Nb-Si bonding across the interface.  相似文献   

8.
《Composite Interfaces》2013,20(4-6):319-328
In this work, the effects of electron acceptor–donor modification on the surface properties of SiC were investigated in the mechanical interfacial properties of carbon fibers-reinforced SiC-impregnated epoxy matrix composites. The surface properties of the SiC were determined according to acid/base values and FT-IR, and contact angle measurements. The thermal and mechanical interfacial properties of the composites were evaluated using a thermogravimetric analysis, critical strain energy release rate mode II (G IIC), and impact strength testing. As a result, the electron acceptor-treated SiC had a higher acid value and polar component in surface free energy than did the untreated SiC or the electron donor-treated SiC. The G IIC and impact strength mechanical interfacial properties of the composites had been improved in the specimens treated by acidic solutions due to the good wetting and a high degree of adhesion with electron donor characteristic epoxy resins.  相似文献   

9.
W, Al2O3 and Ti films were deposited onto a Cu substrate by means of the rf magnetron sputtering method. After deposition, the foils were annealed at various temperatures in vacuum and the interfaces of the films were observed by a field-emission transmission electron microscopy (FE-TEM), after preparing a cross-sectional thin foil using a focused ion beam (FIB) machine. After annealing the foil at 473 and 623 K, no reaction phases were identified at each interface of W/Al2O3, Al2O3/Ti and Ti/Cu-substrate. However, from the results of compositional analysis at the interface of Al2O3/Ti bilayer, after heat-treatment at 623 K, the formation of an oxide layer was suggested even though it was not clearly observed. On the other hand, after heat-treatment at 823 K, the formation of CuTi2, Cu3Ti2 and Cu4Ti phases were identified at the interface of Ti/Cu bilayers from the compositional analysis of reaction layers after heat-treatment at different temperatures, and the diffusion coefficients and activation energies in the phases were evaluated. In this paper, the influence of heat-treatment on the interfacial behavior of multilayer are discussed on the basis of nanoscale analysis by EDS and HRTEM images.  相似文献   

10.
用自催化沉积非晶态(Ni,Cu)100-xPx+SiC复合材料,研究了复合材料的组成与晶化特性,结果表明,当x>14或者SiC体积分数小于12.8%时,复合材料即保持非晶态;时效温度达到603—618K,复合材料逐渐向晶态过渡,晶化相为fc c Ni和NiyPz,稳定组织为(Ni,Cu)P+Ni3P+SiC.较非晶态复合材料,晶态材料具有更高的力学性能. 关键词:  相似文献   

11.
Polydimethylsiloxane (PDMS)/fumed silica A-300 and PDMS/ZrO2/A-300 were studied using adsorption, thermogravimetry, temperature-programmed desorption (TPD) mass-spectrometry, infrared spectroscopy, XRD, and broadband dielectric relaxation spectroscopy. ZrO2 was synthesized on fumed silica with zirconium acetylacetonate in CCl4 at 350 K for 1 h and calcinated at 773 K for 1 h (1-4 reaction cycles). PDMS (5-40 wt.%) was adsorbed onto silica and zirconia/silica from hexane solution and then dried. Grafted zirconia changes the chemistry of the surface (because of its catalytic capability) and the topology of secondary particles (because of occupation of voids in aggregates of primary silica particles by zirconia nanoparticles) responsible for the textural porosity of the powders. Therefore, many properties (such as structural characteristics of the composites, reactions on heating in air and vacuum, interfacial relaxation phenomena, hydrophobicity as a function of treatment temperature, etc.) of PDMS/zirconia/silica strongly differ from those of PDMS/A-300. Broadening of the α-relaxation of PDMS at the interfaces of disperse oxides suggests both weakening of the PDMS-PDMS interaction and strengthening of the PDMS-oxide interaction.  相似文献   

12.
《Composite Interfaces》2013,20(4):363-377
The objective of this work is to study the effect of composite processing conditions on the nature of the fiber–matrix interface in titanium matrix composites and the resulting fragmentation behavior of the fiber. Titanium matrix, single fiber composites (SFCs) were fabricated by diffusion bonding and tensile tested along the fiber axis to determine their interfacial load transfer characteristics and the resulting fiber fragmentation behavior. Two different titanium alloys, Ti-6Al-4V (wt%) and Ti-14Al-21Nb (wt%), were used as matrix material with SiC (SCS-6) fibers as reinforcement. The tensile tests were conducted at ambient temperature and were continuously monitored by acoustic emission. It was observed that the Ti-6Al-4V/SCS-6 composite system exhibited a greater degree of fiber–matrix interfacial reaction, as well as a rougher interface, compared to Ti-14Al-21Nb/SCS-6 composites. Acoustic emissions during tensile testing showed that most of the fiber fractures in Ti-6Al-4V/SCS-6 occurred at strains below ~5% and the fragmentation ceased at ~10% strain corresponding to specimen necking. In contrast, the Ti-14Al-21Nb/SCS-6 composite deformed without necking and fiber fractures occurred throughout the plastic range until final fracture of the specimen at about 12% strain. The markedly different fragmentation characteristics of these two composites were attributed to differences in the fiber–matrix interfacial regions and matrix deformation behavior.  相似文献   

13.
The MgB2 coated superconducting tapes have been fabricated on textured Cu (0 0 1) and polycrystalline Hastelloy tapes using coated conductor technique, which has been developed for the second generation high temperature superconducting wires. The MgB2/Cu tapes were fabricated over a wide temperature range of 460-520 °C by using hybrid physical-chemical vapor deposition (HPCVD) technique. The tapes exhibited the critical temperatures (Tc) ranging between 36 and 38 K with superconducting transition width (ΔTc) of about 0.3-0.6 K. The highest critical current density (Jc) of 1.34 × 105 A/cm2 at 5 K under 3 T is obtained for the MgB2/Cu tape grown at 460 °C. To further improve the flux pinning property of MgB2 tapes, SiC is coated as an impurity layer on the Cu tape. In contrast to pure MgB2/Cu tapes, the MgB2 on SiC-coated Cu tapes exhibited opposite trend in the dependence of Jc with growth temperature. The improved flux pinning by the additional defects created by SiC-impurity layer along with the MgB2 grain boundaries lead to strong improvement in Jc for the MgB2/SiC/Cu tapes. The MgB2/Hastelloy superconducting tapes fabricated at a temperature of 520 °C showed the critical temperatures ranging between 38.5 and 39.6 K. We obtained much higher Jc values over the wide field range for MgB2/Hastelloy tapes than the previously reported data on other metallic substrates, such as Cu, SS, and Nb. The Jc values of Jc(20 K, 0 T) ∼5.8 × 106 A/cm2 and Jc(20 K, 1.5 T) ∼2.4 × 105 A/cm2 is obtained for the 2-μm-thick MgB2/Hastelloy tape. This paper will review the merits of coated conductor approach along with the HPCVD technique to fabricate MgB2 conductors with high Tc and Jc values which are useful for large scale applications.  相似文献   

14.
In present work, Cf/Mg-8Gd and SiC+Cf/Mg-8Gd composites were fabricated by squeeze infiltration method. Gd2O3 coating layers were found on the surface of the carbon fibers in these two kinds of the composites, while GdC2 precipitations were found in the hybrid reinforced composite only. Owing to this phenomenon, the coating layer in SiC+Cf/Mg-8Gd composite (88 nm) was much thinner than the one without the SiC particles (160 nm). The Gd2O3 coating layer formed on the surface of carbon fibers can improve the wettability between carbon fibers and magnesium alloy.  相似文献   

15.
The impact of the ZrO2/La2O3 film thickness ratio and the post deposition annealing in the temperature range between 400 °C and 600 °C on the electrical properties of ultrathin ZrO2/La2O3 high-k dielectrics grown by atomic layer deposition on (1 0 0) germanium is investigated. As-deposited stacks have a relative dielectric constant of 24 which is increased to a value of 35 after annealing at 500 °C due to the stabilization of tetragonal/cubic ZrO2 phases. This effect depends on the absolute thickness of ZrO2 within the dielectric stack and is limited due to possible interfacial reactions at the oxide/Ge interface. We show that adequate processing leads to very high-k dielectrics with EOT values below 1 nm, leakage current densities in the range of 0.01 A/cm2, and interface trap densities in the range of 2-5 × 1012 eV−1 cm−2.  相似文献   

16.
A new type of multicoated silica/zirconia/silver (SiO2/ZrO2/Ag) core-shell composite microspheres is synthesized in this paper. In the process, ZrO2-decorated silica (SiO2/ZrO2) core-shell composites were firstly fabricated by the modification of zirconia on silica microspheres through the hydrolysis of zirconium precursor. Subsequently, on SiO2/ZrO2 composite cores, silver nanoparticles were introduced via ultrasonic irradiation and acted as “Ag seeds” for the formation of integrate silver shell by further reduction of silver ions using formaldehyde as reducer. The resulting samples were characterized by transmission electron microscopy, X-ray diffraction, Fourier-transform infrared, energy-dispersive X-ray, and UV-vis spectroscopy, indicating that zirconia and silver layers were successfully coated on the surfaces of silica microspheres.  相似文献   

17.
李文生  张杰  董洪锋  禇克  王顺才  刘毅  李亚明 《中国物理 B》2013,22(1):18102-018102
Cu-Fe based diamond composites used for saw-blade segments are directly fabricated by vacuum and pressure- assisted sintering. The carbide forming elements Cr and Ti are added to improve interfacial bonding between diamond and the Cu-Fe matrix. The interfacial reactions between diamond/graphite and Cr or Ti, and diamond graphitization are investigated by thermodynamics/kinetics analyses and experimental methods. The results show that interfacial reactions and graphitization of diamond can automatically proceed thermodynamically. The Cr3C2 , Cr7C3 , Cr23C6 , and TiC are formed at the interfaces of composites by reactions between diamond and Cr or Ti; diamond graphitization does not occur because of the kinetic difficulty at 1093 K under the pressure of 13 MPa.  相似文献   

18.
Y.J. Guo  X.T. Zu  B.Y. Wang  X.D. Jiang  X.D. Yuan  H.B. Lv  S.Z. Xu 《Optik》2009,120(18):1012-1015
Two-layer ZrO2/SiO2 and SiO2/ZrO2 films were deposited on K9 glass substrates by sol–gel dip coating method. X-ray photoelectron spectroscopy (XPS) technique was used to investigate the diffusion of ZrO2/SiO2 and SiO2/ZrO2 films. To explain the difference of diffusion between ZrO2/SiO2 and SiO2/ZrO2 films, porous ratio and surface morphology of monolayer SiO2 and ZrO2 films were analyzed by using ellipsometry and atomic force microscopy (AFM). We found that for the ZrO2/SiO2 films there was a diffusion layer with a certain thickness and the atomic concentrations of Si and Zr changed rapidly; for the SiO2/ZrO2 films, the atomic concentrations of Si and Zr changed relatively slowly, and the ZrO2 layer had diffused through the entire SiO2 layer. The difference of diffusion between ZrO2/SiO2 and SiO2/ZrO2 films was influenced by the microstructure of SiO2 and ZrO2.  相似文献   

19.
ZrO2 thin films have been prepared on Pt-coated silicon substrates and directly on n-Si(100) substrates by the pulsed laser deposition (PLD) technique using a ZrO2 ceramic target under different deposition conditions. X-ray diffraction showed that the films prepared at 400 °C in 20 Pa oxygen ambient remained amorphous. Differential thermal analysis was carried out to study the crystallization behavior of ZrO2. The dielectric constant of ZrO2 was determined to be around 24 by measuring a Pt/ZrO2/Pt capacitor structure. Sputtering depth profile X-ray photoelectron spectroscopy was used to investigate the interfacial characteristics of ZrO2/n-Si stacks. A Zr silicate interfacial layer was formed between the ZrO2 layer and the silicon substrate. The equivalent oxide thickness (EOT) and leakage current densities of the films with 6.6 nm physical thickness post-annealed in O2 and N2 ambient were investigated. An EOT of 1.65 nm with a leakage current of 36.2 mA/cm2 at 1 V gate voltage for the film post-annealed in N2 has been obtained. ZrO2 thin films prepared by PLD have acceptable structure and dielectric properties required by a candidate material of high-k gate dielectrics. PACS 77.55.+f; 81.15.Fg; 73.40.Qv  相似文献   

20.
Zirconium (Zr) oxide films were directly deposited on Si substrate by using Ar and O2 mixed electron cyclotron resonance plasma sputtering. The structural and electrical properties of the deposited ZrO2 film were investigated in detail. According to the X-ray diffraction and Fourier transform infrared spectrometer measurements, polycrystalline films consisting of a monoclinic state were formed at substrate temperatures between 130 and 400 °C. An interfacial Si oxide layer was found and the thickness increased as the substrate temperature increased. It was found from the I–V measurement that the electrical properties of the deposited ZrO2 films were very sensitive to the O2 flow rate, and the dielectric breakdown field of 3∼5 MV/cm was achieved under the optimum condition. Permittivity of the ZrO2 film was extracted by linear fitting of the reciprocal accumulation capacitance versus oxide thickness. The permittivity was 20.5 and an interfacial Si oxide layer was 2.3 nm. Both were very consistent with the result obtained from spectroscopic ellipsometer. PACS 77.55.+f; 81.15.Cd; 52.77.Dq  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号