首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The interfacial interactions between inorganics and polymer matrix have important effects on the properties of nano-composites. A commercially available nano-SiO2 was modified by surface pretreatment with sulfonated polyethersulfone, which is a typical polyethersulfone (PES) derivative, and served as a macromolecular modifier in this paper to fabricate PES/SiO2 nano-composite films. The modified SiO2 phase was well dispersed in polymer matrix due to its unique structure and the satisfactory interfacial interaction between nano-particles and the PES matrix. Compared with pristine SiO2 as a ceramic filler, there was noticeable improvement in the transmission of light when modified SiO2 was used. Effects of surface modification on thermal stability were also studied by thermo-gravimetric analysis.  相似文献   

2.
钢渣作为炼钢过程中产生的固体废弃物,矿渣作为高炉炼铁过程中的副产品,其存在难以利用与附加值的问题。面对上述问题,利用钢渣与矿渣开发一种价格低廉的复合橡胶填料用于橡胶领域。采用磁选热闷渣、未磁选热闷渣、矿粉和助磨-改性复合剂制备改性钢渣-矿粉复合橡胶填料,并且用于复合橡胶体系。研究磁选热闷渣用量、未磁选热闷渣用量、矿粉用量和助磨-改性复合剂用量对改性钢渣-矿粉基橡胶复合材料性能的影响,并且分析其影响机理。结果表明,以磁选热闷渣用量150 g、未磁选热闷渣用量150 g、矿粉用量150 g和助磨-改性复合剂用量9 g制备的改性钢渣-矿粉复合橡胶填料补强-阻燃性能最优。按改性钢渣-矿粉复合橡胶填料∶炭黑质量比20∶30制备的改性钢渣-矿粉基橡胶复合材料,其拉伸强度为21.83 MPa、撕裂强度为46.23 kN·m-1、邵尔A硬度为62、磨耗量为159 mm3、极限氧指数为19.8%与燃尽时间为187 s。助磨-改性复合剂不仅降低粒径尺寸、提高粒径均匀性,而且改善钢渣-矿粉复合橡胶填料的表面结构与性质,有利于改性钢渣-矿粉复合橡胶填料在复合橡胶体系中均匀分散,提高相容性。钢渣与矿粉在助磨-改性复合剂的作用下发生化学反应,改变了钢渣与矿粉的物相组成,提高补强性能与阻燃性能。  相似文献   

3.
The surface of silicone rubber swelled and was modified by 157-nm F2 laser irradiation at a laser fluence less than the ablation threshold. The irradiated surface swelled to a height of approximately 3 m. Fourier-transform infrared (FT-IR) spectroscopy and X-ray photoelectron spectroscopy showed that the irradiated surface was modified to SiO2. 193-nm ArF laser irradiation of the silicone rubber induced the surface to swell, but not to modify to SiO2. The IR peaks of end groups of silicone were observed in the FT-IR spectra of the surface. From these results, it is concluded that the main chains (Si-O) of silicone were photodissociated and generation of low molecular weight silicones caused the swelling. In addition, it was observed that methane and carbon dioxide were released from silicone rubber when each laser beam irradiated it. These gases were generated by photodissociation of the side chains (Si-CH3) of silicone. An F2 laser beam can photodissociate the Si-CH3 bonds and the Si-O bonds of silicone and O2 effectively even at a laser fluence less than the ablation threshold, resulting in the modification to SiO2 and the swelling. PACS 61.80.Ba; 61.82.Pv; 82.50.Hp  相似文献   

4.
《Composite Interfaces》2013,20(5-7):533-549
This paper investigates the effect of the interphase properties and the interfacial interactions between matrix and filler on mechanical properties of precipitated calcium carbonate (PCC)–polypropylene nanocomposites. PCC particles were coated with stearic acid (SA). The weight ratio of SA on the particles (w SA) ranged from 0 to 0.135 g SA/g PCC. The introduction of PCC particles resulted in an increase in stiffness and yield stress compared with the pristine polymeric matrix and, at the same time, it increased the impact resistance. The maximum improvement in the impact behaviour was achieved for the composites with w SA =0.045 corresponding to the theoretical monolayer ratio. A decrease in interfacial interactions between monolayer coated PCCs and the matrix with respect to the uncoated particles was observed by using a semi-empirical equation developed by Pukànszky. The low degree of interfacial interactions between particulate filler and matrix allows a matrix–particle debonding phenomenon, as shown by scanning electron microscopy analysis. Extensive plastic deformations were evident as well, promoting an improvement in toughness. The thickness of the interphase between particles and matrix was evaluated by using the Shen–Li model which is based on the hypothesis of a non-homogeneous interphase. It results that the thickness increased in the order uncoated < monolayer coated < 3% SA coated ? 13.5% SA coated particles. The thinner and stronger interphase found for the composite with uncoated particles can be explained with the high interaction between matrix and filler and the consequent low mobility of the polymeric chains.  相似文献   

5.
本文采用高压均质结合对辊挤压工艺对天然凹凸棒石进行棒晶解离得到了纯度较高和比表面积较大(133.7 m2/g)的纳米解离凹凸棒石. 进一步通过机械共混法分别将天然凹凸棒石和纳米解离凹凸棒石与硅橡胶生胶复合制备了天然凹凸棒石-硅橡胶和纳米解离凹凸棒石-硅橡胶材料,研究了天然凹凸棒石和纳米解离凹凸棒石对凹凸棒石/硅橡胶复合材料热氧化降解和老化性能的影响. 结果表明,天然凹凸棒石-硅橡胶和纳米解离凹凸棒石-硅橡胶在300 oC热氧老化处理0.5 h后,相比于纯硅橡胶,初始5%失重温度从385 oC提高至396∽399 oC. 系列表征结果表明,天然凹凸棒石和纳米解离凹凸棒石增强了纳米粒子与硅橡胶之间的相互作用从而抑制了纳米颗粒聚集,并且可显著提高硅橡胶侧链Si-CH3的保存率,从而提高了该复合材料的热氧化降解和老化性能. 此外,纳米解离凹凸棒石可大大抑制纳米粒子的长大;因此老化后,纳米解离凹凸棒石-硅橡胶表现出了比硅橡胶(10.6%、7.4%和5.0%)更高的拉伸强度、断裂伸长率和撕裂强度保留率(40.6%、34.9% 和30.1%).  相似文献   

6.
To study the effect of different surface structures on resultant mechanical and rheological properties, nano-CaCO3 particles were treated with isopropyl tri-stearyl titanate (H928), isopropyl tri-(dodecylbenz-enesulfonyl) titanate (JN198), and isopropyl tri-(dioctylpyrophosphato) titanate (JN114). Scanning electron microscopy (SEM) and dynamic mechanic analysis (DMA), carried out to characterize the effective interfacial interaction between the nano-CaCO3 particles and a poly(vinyl chloride) (PVC) matrix, indicated that JN114 treated nano-CaCO3 particles had the strongest interfacial interaction with a PVC matrix, while H928 treated nano-CaCO3 had the weakest. The rheological and mechanical properties of PVC/nano-CaCO3 composites were investigated as a function of surface structure and filler volume fraction. The tensile yield stress and elongation at break decreased with the increasing of calcium carbonate content while tensile modulus increased. PVC filled with JN114 treated nano-CaCO3 had the highest tensile modulus and tensile yield stress, while those filled with H928 treated nano-CaCO3 had the highest elongation at break at the same filler content. The impact strength of PVC/nano-CaCO3 composites increased with the increasing of CaCO3 content, and PVC composites filled with JN198 treated nano-CaCO3 particle had a higher impact strength than those with JN114 or H928 treated, with the value reaching 23.9 ± 0.7 kJ/m2 at 11 vol% CaCO3, four times as high as that of pure PVC. Rheological properties indicated that a suitable interfacial interaction and a good dispersion of inorganic filler in a PVC matrix could reduce the viscosity of PVC/nano-CaCO3 composites. The interfacial interaction was quantitatively characterized by semiempirical parameters calculated from the tensile strength of PVC/nano-CaCO3 composites to confirm the results from the SEM and DMA experiments.  相似文献   

7.
Carbon black (N234) and silica (Vulksail N) with a silane coupling agent Si-69 were chosen as reinforcing fillers in butyl rubber (IIR). The rheological behavior of the IIR compounds and the dynamic mechanical properties of IIR vulcanizates were investigated with a rubber processing analyzer and dynamic mechanical analysis (DMA) to examine the filler dispersion in the rubber matrix and the interaction between filler and matrix. The data indicated that the N234 filled IIR compounds had more filler networks than those filled with silica. Filler networks first appeared at 30 phr N234 and 45 phr silica with silane coupling agent Si-69. The interaction between N234 and IIR was far stronger than that between silica and IIR. However, the silica Vulksail N filled IIR had better wet-grip and lower rolling resistance compared to the carbon black-filled IIR should IIR be chosen as a substitute of styrene-butadiene rubber (SBR) in tire tread. The reinforcing factor, R, R (related to the difference in tan d peak height at Tg for the filled and nonfilled rubbers), also demonstrated that the N234-IIR interaction was stronger than for the silica. IIR with 30 phr N234 exhibited the largest tensile strength, 20.1 MPa, for those vulcanizates examined. The tensile and tear strengths of N234 filled IIR were higher than those of IIR with similar amounts of silica. Thus, it was concluded that N234 is a more active reinforcing filler in IIR than silica (Vulksail N) even with a silane coupling agent (Si-69).  相似文献   

8.
Amine-functionalized graphene nanoplatelets (AGNPs) were prepared via an easy simple one-step process, treating graphite powder with 4-aminobenzoic acid in polyphosphoric acid, and then the effects of the AGNPs on the curing and physical properties of an epoxy resin were studied. The formation of the AGNPs was confirmed by scanning electronic microscopy (SEM), Fourier transform infrared spectroscopy, and thermogravimetric analyzer. Curing behavior of the epoxy/AGNPs nanocomposite was investigated by differential scanning calorimeter. The AGNPs made the epoxide curing reaction with amine groups slightly faster. The physical properties of the epoxy/AGNPs nanocomposite were investigated by dynamic mechanical analyzer, thermomechanical analyzer, and impact test. The AGNPs improved Tg by 21.4 °C, and storage modulus and impact strength of the epoxy resin 23 and 73%, respectively, much more effective than the graphite powder at the same filler loading of 1 phr. SEM images for the fracture surfaces of the epoxy/AGNPs nanocomposite showed improved interfacial bonding between the epoxy matrix and the nanofillers due to the amine functional groups of the AGNPs.  相似文献   

9.
For styrene-butadiene rubber (SBR) compounds filled with the same volume fraction of carbon black (CB), precipitated silica and carbon–silica dual phase filler (CSDPF), filler-rubber interactions were investigated thru bound rubber content (BRC) of the compounds and solid-state 1H low-field nuclear magnetic resonance (NMR) spectroscopy. The results indicated that the BRC of the compound was highly related to the amount of surface area for interaction between filler and rubber, while the solid-state 1H low-field NMR spectroscopy was an effective method to evaluate the intensity of filler-rubber interaction. The silica-filled compound showed the highest BRC, whereas the CB-filled compound had the strongest filler-rubber interfacial interaction, verified by NMR transverse relaxation. The strain sweep measurements of the compounds were conducted thru a rubber process analyzer; the results showed that the CSDPF-filled compound presented the lowest Payne effect, which is mainly related to the weakened filler network structure in polymer matrix. The temperature sweep measurement, tested by dynamic mechanical thermal analysis, indicated that the glass transition temperature did not change when SBR was filled with different fillers, whereas the storage modulus in rubbery state and the tanδ peak height were greatly affected by the filler network structure of composites.  相似文献   

10.
《Composite Interfaces》2013,20(6):481-499
Atomic force microscopy (AFM) is employed to study the amine-terminated poly (butadiene-co-acrylonitrile) (ATBN) rubber-modified polybenzoxazine resin. Topographic mapping of the fracture surface is performed in conjunction with lateral force microscopy (LFM) and force–distance curve measurements (Fd). Matrix T g reduction is attributed to the dissolved rubber and the increased mechanical damping (tan δ) is derived from the phase-separated rubber. Saturation of the rubber in the matrix is defined at 6 wt% above which the matrix T g is not influenced upon rubber loading. The solubility limit of the reactive rubber in the matrix phase is determined from the fractured surface using LFM. The torsional force analyzed in the matrix phase increases upon the addition of rubber and levels off at 6 wt%. The results provide a direct correlation between bulk properties acquired by DMA and fractured surface probed by AFM. The presence of interphase between the separated rubbery domain and the continuous matrix phase is confirmed and its thickness is quantified from Fd curves. Moreover, it is found that interphase properties exhibit a strong rubber-concentration dependence.  相似文献   

11.
《Composite Interfaces》2013,20(4-6):319-328
In this work, the effects of electron acceptor–donor modification on the surface properties of SiC were investigated in the mechanical interfacial properties of carbon fibers-reinforced SiC-impregnated epoxy matrix composites. The surface properties of the SiC were determined according to acid/base values and FT-IR, and contact angle measurements. The thermal and mechanical interfacial properties of the composites were evaluated using a thermogravimetric analysis, critical strain energy release rate mode II (G IIC), and impact strength testing. As a result, the electron acceptor-treated SiC had a higher acid value and polar component in surface free energy than did the untreated SiC or the electron donor-treated SiC. The G IIC and impact strength mechanical interfacial properties of the composites had been improved in the specimens treated by acidic solutions due to the good wetting and a high degree of adhesion with electron donor characteristic epoxy resins.  相似文献   

12.
《Composite Interfaces》2013,20(5-7):603-614
In this study composites of high density polyethylene (HDPE) with various SiO2 content were prepared by melt compounding using maleic anhydride grafted polyethylene (PE-g-MAH) as a compatibilizer. The composites containing 2, 4 and 6% by weight of SiO2 particles were melt-blended in a co-rotating twin screw extruder. In all composites, polyethylene-graft-maleic anhydride copolymer (PE-g-MAH, with 0.85% maleic anhydride content) was added as a compatibilizer in the amount of 2% by weight. Morphology of inorganic silica filler precipitated from emulsion media was investigated. Mechanical properties and composite microstructure were determined by tensile tests and scanning electron microscopy technique (SEM). Tensile strength, yield stress, Young's modulus and elongation at break of PE/SiO2 composites were mainly discussed against the properties of PE/PE-g-MAH/SiO2 composites. The most pronounced increase in mechanical parameters was observed in Young's modulus for composites with polyethylene grafted with maleic anhydride. The increase in the E-modulus of PE/PE-g-MAH/SiO2composites was associated with the compatibility and improvement of interfacial adhesion between the polyethylene matrix and the nanoparticles, leading to an increased degree of particle dispersion. This finding was verified on the basis of SEM micrographs for composites of PE/PE-g-MAH/4% by weight of SiO2. The micrographs clearly documented that addition of only 2 wt% of the compatibilizer changed the composite morphology by reducing filler aggregates size as well as their number. Increased adhesion between the PE matrix and SiO2 particles was interpreted to be a result of interactions taking place between the polar groups of maleic anhydride and silanol groups on the silica surface. These interactions are responsible for reduction of the size of silica aggregates, leading to improved mechanical properties.  相似文献   

13.
The effects of hydrophobic magnesium hydroxide (Mg(OH)2) particles, prepared by a surface modification method with oleic acid, on the flame-retarding and mechanical properties of polyvinyl chloride (PVC) were investigated. Comparison between the use of modified and unmodified Mg(OH)2 in the preparation of PVC composites showed that the former could provide excellent optical and flame-retarding properties. The dispersion of the modified Mg(OH)2 particles in the PVC matrix was investigated through scanning electron microscopy. Compared with a composite containing unmodified Mg(OH)2, the rheological and impact strength properties of that containing the modified Mg(OH)2 filler were found to be significantly improved. These improvements were mostly attributed to the better dispersion of the modified Mg(OH)2 particles and the strong adhesion between the filler and matrix.  相似文献   

14.
Carbon nanotube (CNT)/metal interface interaction is critical to the mechanical properties of CNT-reinforced metal matrix composites (MMCs). In this paper, in order to realize the chemical modification of the interface interaction between CNTs and Mg matrix, different types of defects (monovacancy, carbon and oxygen adatoms, as well as p-type boron and n-type nitrogen substitution) are introduced in CNTs to investigate the effect of the defects on the interface interaction (Eib) between CNT and Mg (0 0 0 1) surface. Moreover, two models (adsorption model and interface model) are compared and validated to investigate the interface interaction. It is revealed that the CNT with the carbon adatom has the highest Eib with the Mg (0 0 0 1), and the effect of boron doping on Eib is superior to the intermediate oxygen which has already been proved experimentally in the enhancement of the interface interaction in MMCs. In terms of the electronic structure analysis, we reveal the micro-mechanism of the increase of Eib under the action of different types of defects, and propose that the presence of holes (boron dopant) and the unsaturated electrons in CNTs can generate the chemical interaction between CNT and Mg matrix effectively. Our results are of great scientific importance to the realization of robust interfacial bonding between CNTs and Mg matrix via the reinforcement modification, so as to enhance the mechanical properties of CNTs reinforced Mg matrix composites.  相似文献   

15.
The models for single-fiber push out test are developed to evaluate the fracture toughness GIIc of the fiber/matrix interface in titanium alloys reinforced by SiC monofilaments. The models are based on fracture mechanics, taking into consideration of the free-end surface and Poisson expansion. Theoretical solutions to GIIc are obtained, and the effects of several key factors such as the initial crack length, crack length, friction coefficient, and interfacial frictional shear stress are discussed. The predictions by the models are compared with the previous finite element analysis results for the interfacial toughness of the composites including Sigma1240/Ti-6-4, SCS/Ti-6-4, SCS/Timetal 834, and SCS/Timetal 21s. The results show that the models can reliably predict the interfacial toughness of the titanium matrix composites, in which interfacial debonding usually occurs at the bottom of the samples.  相似文献   

16.
王建立  熊国平  顾明  张兴  梁吉 《物理学报》2009,58(7):4536-4541
用Pt细丝代替已有3ω方法中的薄膜热线,并设计了基于Labview程序的虚拟测量系统,准确、方便地测量了聚丙烯复合材料的热导率. 测量结果发现,多壁碳纳米管/丁苯橡胶/聚丙烯三元复合材料的热导率随着多壁碳纳米管/丁苯橡胶粉末含量的增加变化不大;多壁碳纳米管/聚丙烯复合材料的热导率随着多壁碳纳米管含量增加而增大;复合材料热导率远小于简单混合规则预测的结果,而与有效介质理论符合很好. 关键词: ω法')" href="#">3ω法 多壁碳纳米管 聚丙烯复合材料 热导率  相似文献   

17.
Transparent fused silica (SiO2) microspheres 2.5 μm in diameter were photochemically welded to transparent, flexible silicone rubber ([SiO(CH3)2]n) substrate by 193 nm ArF excimer laser induced photochemical modification of silicone into silicon oxide. Single layer of silica microspheres was easily formed on an adhesive silicone rubber before laser irradiation after dropping of silica microspheres dispersed in ethanol and subsequent tape peeling. The welding rate, the percentage of welded microspheres tested by ultrasonic cleaning with ethanol, was examined by varying the single pulse fluence and irradiation time of ArF excimer laser. The welding layer underneath microsphere, silicon oxide, was also found to emit white light of strong intensity under UV light illumination.  相似文献   

18.
《Composite Interfaces》2013,20(5):527-548
Short nylon-6 fibre reinforced acrylonitrile butadiene rubber (NBR) composites were prepared and the interfacial adhesion was evaluated by the restricted solvent swelling technique. The solvents used were N,N-dimethyl formamide (DMF), dimethyl sulphoxide (DMSO) and acetonitrile. As the fibre content increased, the solvent uptake decreased, which has been attributed to the increased hindrance to solvent penetration due to better fibre–rubber interaction. It was observed that the ratio of change in volume fraction of rubber before and after swelling to the volume fraction of rubber before swelling (V 0V r/V 0) was lower for a bonding agent added composite, compared to the unbonded one. Anisotropic swelling studies were carried out to analyze the extent of fibre alignment and fibre–matrix interaction. It was seen that in strongly bonded composites, the swelling mainly took place in the thickness direction. The rubber–fibre interaction has also been examined by the Lorenz–Parks and Kraus equations.  相似文献   

19.
《Composite Interfaces》2013,20(4-6):535-544
Dynamic mechanical properties (elastic moduli, phase angle) for superconducting (SC) polymer–ceramic composites based on Y1Ba2Cu3O7?x SC oxide ceramic and superhighmolecular polyethylene have been investigated. The analysis of the obtained data shows a strong interaction of the polymeric binder with the surface of the ceramic grains. It is concluded that changes of packing and structure of the macromolecules occur at the ceramic–polymer interface. This is confirmed by melting enthalpy measurements of SC polymer–ceramic composites of different filler content. Scanning electron microscopy studies of the high temperature SC composites showed that the ceramic grains are evenly covered by the binder for both amorphous and crystalline polymers. EPR (electron paramagnetic resonance) spectra of polymer–ceramic composites have shown that the intensity of the EPR signals of Cu2+(1) depends on the nature and the content of binder. The Mn, Co, Zn, Ni containing superconducting composites have been obtained by frontal polymerization.  相似文献   

20.
《Composite Interfaces》2013,20(4):309-322
The development of high-performance polymer composites is tightly bound with the functional surface modification of reinforcements. A new method, based on the principle of the fiber-bundle pull-out test, is proposed to analyze the interfacial properties between the long fibers in the form of a bundle and the polymer matrix. Specimen geometry and a test fixture were designed using finite element analysis. The method was verified for unsized and sized glass fibers embedded in polyester resin to demonstrate its applicability for a wide range of adhesion between fibers and the polymer matrix. The pull-out test can be used for a relative comparison of different surface modifications if the bundle geometry is unknown. The results of high reproducibility and sensitivity for interfacial properties make the method attractive.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号