首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Cationic copolymerization of tetrahydrofuran with ethylene oxide in the presence of diols proceeds, at the properly chosen conditions, with complete conversion of both comonomers and leads to telechelic oligodiols. These conditions are based on the simultaneous kinetic and thermodynamic control for two operating mechanisms namely active chain end and activated monomer mechanism. Kinetics of copolymerization and model reactions were studied. The ratios of rate constants of competing reactions, governing the copolymer composition, were determined and it was found, that the microstructure of the copolymer can be controlled at low conversion while at higher conversion the kinetics of the competing parallel reactions is not favourable for the formation of a regular copolymer, in contrast to the previously studied copolymerization of tetrahydrofuran with epichlorohydrin.  相似文献   

2.
The living cationic polymerization of isobutyl vinyl ether (IBVE) was investigated in the presence of various cyclic and acyclic ethers with 1-(isobutoxy)ethyl acetate [CH3CH(OiBu)OCOCH3, 1 ]/EtAlCl2 initiating system in hexane at 0°C. In particular, the effect of the basicity and steric hindrance of the ethers on the living nature and the polymerization rate was studied. The polymerization in the presence of a wide variety of cyclic ethers [tetrahydrofuran (THF), tetrahydropyran (THP), oxepane, 1,4-dioxane] and cyclic formals (1,3-dioxolane, 1,3-dioxane) gave living polymers with a very narrow molecular weight distribution (MWD) (M?ω/M?n ≤ 1.1). On the other hand, propylene oxide and oxetane additives resulted in no polymerization, whereas 1,3,5-trioxane gave the nonliving polymer with a broader MWD. The polymerization rates were dependent on the number of oxygen and ring sizes, which were related to the basicity and the steric hindrance. The order of the apparent polymerization rates in the presence of cyclic ether and formal additives was as follows: nonadditive ~ 1,3,5-trioxane ? 1,3-dioxane > 1,3-dioxolane ? 1,4-dioxane ? THP > oxepane ? THF ? oxetane, propylene oxide ? 0. The polymerization in the presence of the cyclic formals was much faster than that of the cyclic ethers: for example, the apparent propagation rate constant k in the presence of 1,3-dioxolane was 103 times larger than that in the presence of THF. Another series of experiments showed that acyclic ethers with oxyethylene units were effective as additives for the living polymerization with 1 /EtAlCl2 initiating system in hexane at 0°C. The polymers obtained in the presence of ethylene glycol diethyl ether and diethylene glycol diethyle ether had very narrow molecular weight distribution (M?ω/M?n ≤ 1.1), and the M?n was directly proportional to the monomer conversion. The polymerization behavior was quite different in the polymerization rates and the MWD of the obtained polymers from that in the presence of diethyl ether. These results suggested the polydentate-type interaction or the alternate interaction of two or three ether oxygens in oxyethylene units with the propagating carbocation, to permit the living polymerization of IBVE. © 1994 John Wiley & Sons, Inc.  相似文献   

3.
A temperature change-dependent sequence transformation of copolymer chains was demonstrated by a method based on tandem depolymerization and transacetalization reactions during the cationic ring-opening copolymerization of cyclic acetals and cyclic esters. In this study, the position of polymerization-depolymerization equilibrium was controlled by the reaction temperature rather than by the decrease in monomer concentration under vacuum conditions, as in our previous study. First, the conditions for efficient copolymerization were optimized, with a particular focus on the structures of cyclic acetals and cyclic esters. Subsequently, sequence transformation induced by temperature change was examined during the copolymerization of 2-methyl-1,3-dioxepane (generated in situ from 4-hydroxybutyl vinyl ether) and δ-valerolactone using EtSO3H. The homosequence length of cyclic acetals decreased during depolymerization (unzipping) at the oxonium chain ends upon increasing the temperature from 30 to 90 °C, while transacetalization (scrambling) of the main chain transferred midchain cyclic acetal homosequences to the oxonium chain ends. As a result of the cycle of unzipping and scrambling reactions, an alternating-like copolymer was obtained. Interestingly, the possibility of reversible sequence transformation upon heating and cooling was also demonstrated.  相似文献   

4.
Glycerol reacts with paraformaldehyde to give a mixture of 4-hydroxymethyl-1,3-dioxolane and 5-hydroxy-1,3-dioxane. Some transformations (alkylation and replacement of the OH groups with the Cl atoms) of the synthesized compounds were performed. The differences in NMR and mass spectra of the corresponding 1,3-dioxolanes and 1,3-dioxanes were revealed and discussed.  相似文献   

5.
The γ-ray copolymerization of carbon monoxide with cyclic ethers, such as ethylene oxide, phenyl glycidyl ether, 1,3-dioxolane, 2-vinyl-1,3-dioxolane, terahydrofuran, 1,4-dioxane, and acetaldehyde was studied. A yellowish or brownish powdery copolymer was obtained in most of the cases examined. The infrared spectra showed that copolymers containing the ester structural unit were produced in the copolymerization with cyclic ethers which have no vinyl groups, and that a copolymer containing a ketone structure was produced from cyclic ether having vinyl group. It was found that the copolymer with ethylene oxide also had a β-propiolactone ring structure at the chain end or the side chain. The copolymers were confirmed to be partially crystalline from the x-ray diffraction diagrams. Further, a ring-opening polymerizability of the cyclic ether by γ-radiation was discussed. And it was found that as the bond dissociation energy between the carbon–oxygen linkage of the cyclic ether is small, the polymer yield both in the homopolymerization and copolymerization with carbon monoxide is high. A mechanism for the copolymerization is proposed on the basis of the results.  相似文献   

6.
The relationship between the relative reactivities of ten cyclic ketene acetals and their structures was determined via cationic copolymerizations of eight different monomer pairs. Thus, 2-methylene-1,3-dioxolane (1) was copolymerized with 2-methylene-4-methyl-1,3-dioxolane (2), 2-methylene-4,5-dimethyl-1,3-dioxolane (3), 2-methylene-4,4,5,5-tetramethyl-1,3-dioxolane (4), 2-methylene-4-phenyl-1,3-dioxolane (5), and 2-methylene-4-(t-butyl)-1,3-dioxolane (6). Also 2-methylene-1,3-dioxane (7) was copolymerized with 2-methylene-4-methyl-1,3-dioxane (8), 2-methylene-4,4,6-trimethyl-1,3-dioxane (9), and 2-methylene-4-isopropyl-5,5-dimethyl-1,3-dioxane (10). The relative reactivities of these monomers are: 3 > 5 > 4 > 2 > 1 > 6; and 10 > 9 > 8 > 7. In spite of steric demands, substituents at the 4- or 5-positions in 2-methylene-1,3-dioxolane and substituents at the 4- or 6-positions in 2-methylene-1,3-dioxane serve to increase the copolymerization reactivity. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 2841–2852, 1999  相似文献   

7.
Significant structural effects of enol ether monomers were demonstrated in cationic alternating copolymerizations with benzaldehyde derivatives (BzAs). α‐Methyl, β‐methyl, β,β‐dimethyl, and cyclic enol ethers were copolymerized with BzAs by the EtSO3H/GaCl3 system with 1,4‐dioxane in toluene at ?78 °C. β‐Methyl and cyclic monomers, β‐monosubstituted compounds, induced copolymerizations with BzAs, some of which were well controlled to yield alternating copolymers with controlled molecular weights (MWs) and narrow MW distributions. Conversely, an α‐methyl vinyl ether (VE) did not copolymerize with BzAs at all, probably due to its high reactivity and unfavorable ketal linkage formations. In addition, a β,β‐dimethyl VE underwent only cyclotrimerizations because of its larger steric repulsion. The product alternating copolymers, especially those with cyclic units, exhibited improved thermal properties compared to those with simple VEs units. Under appropriate conditions, the alternating copolymers selectively degraded into the corresponding cinnamaldehyde derivatives by acid hydrolysis. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 1334–1343  相似文献   

8.
The relative reactivities of α-monosubstituted cyclic ethers having rings of three to six members toward a cation were estimated from their copolymerizations with 3,3-bis-(chloromethyl)oxetane (M1) catalyzed by boron trifluoride etherate in methylene chloride at 0°C. It was found that the reactivity of these cyclic ethers was dominated by both the ring strain and the basicity. The following empirical equation was derived to represent the relative reactivity of cyclic ethers: log (1/r1) = ?0.086ΔRS ? 0.31ΔB + 0.57, where ΔRS and ΔB are constants, characteristic of ring strain and basicity of the cyclic ethers and determined from the differences in free energy of polymerization of the corresponding cycloalkanes and in basicity between M1 and M2 monomers, respectively. A good linear correlation was observed between the reactivities calculated from this equation and those obtained from the experiments.  相似文献   

9.
A series of new alkyl mono‐ and bimetallic aluminum complexes supported by novel amidinate ligands has been prepared in very high yields. These complexes were fully characterized by spectroscopic methods. Alkyl aluminum complexes 1 – 6 were investigated as catalysts for the ring‐opening polymerization and copolymerization of ε‐caprolactone and L‐lactide. Under the optimal reaction conditions, complex 5 acts as an efficient single‐component initiator for the ring‐opening polymerization and copolymerization of cyclic esters to yield biodegradable polyester materials with narrow polydispersities. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 2397–2407  相似文献   

10.
New alternating equimolar copolymers of electrophilic trisubstituted ethylenes, methyl 3-phenyl-2-cyanopropenoate and 2-phenyl-1,1-dicyanoethene, with ethyl, n-butyl, i-butyl, t-butyl, 2-chloroethyl, and phenyl vinyl ethers were prepared by free radical initiation. Chemical compositions of the copolymers are 1 : 1 in broad ranges of monomer ratios. The copolymerization rate of both electrophilic monomers with the vinyl ethers increase in the series 2-chloroethyl > ethyl > phenyl > n-butyl > i-butyl > t-butyl. These variations in the reactivity of the vinyl ethers are discussed in terms of their preferred conformations in donor-acceptor complexes with electrophilic trisubstituted ethylenes. © 1993 John Wiley & Sons, Inc.  相似文献   

11.
Ring-substituted phenyl propenyl ethers were found to form homopolymers without any rearrangement by metal halides. Phenyl propenyl ethers were less reactive than the corresponding phenyl vinyl ethers in cationic polymerization. In order to study the electronic effect of a substituent on the reactivity, cis-p-Cl,p-CH3, and p-CH3O-phenyl propenyl ethers were copolymerized with phenyl propenyl ether in methylene chloride at ?78°C with stannic chloride–trichloroacetic acid, and their 1H- and 13C-NMR spectra were measured. The reaction constant ρ against Hammett σp was ?2.1. The cis-phenyl propenyl ethers were slightly more reactive than the corresponding trans isomers. On the other hand, an o-methyl group decreased the reactivity of phenyl propenyl ether. The low reactivity of o-methyl phenyl propenyl ether was attributed to the steric hindrance between the propagating carbocation and the monomer.  相似文献   

12.
13.
Electrochemical deprotection of the cinnamyl moiety from ethers, esters, and carbamates was studied with the focus on O- versus N- selectivity as well as selectivity over allyl or benzyl systems.  相似文献   

14.
Radiation-induced copolymerization of tetrafluoroethylene with various vinyl ethers has been studied. It was found that tetrafluoroethylene can be copolymerized with vinyl ethers to give alternating copolymers over a wide range of the initial monomer concentration in the monomer mixture. The monomer reactivity ratios were determined for the copolymerization of tetrafluoroethylene with n-butyl vinyl ether as 0.005 (rTFE) and 0.0015 (rNBVE). The rate of copolymerization is extremely high and has a maximum at an equimolar concentration of two monomers. The alternating structure of the copolymers was confirmed by the analysis of NMR spectra. Some thermal properties of the copolymers were measured by DSC and DTA.  相似文献   

15.
The cationic polymerization of vinyl ethers initiated by CH3-CH(OR)(I) / R4N+A (R = Alkyl, A = ClO4, BF4, PF6, I, NO3) shows the characteristics of a living polymerization. The rate of polymerization is a function of the solvent polarity, the temperature, the type and concentration of the ammonium salt. The experimental data can be explained on the basis of the secondary salt effect overlapped by some dipol-dipol interactions of the chain end and the added salt. Functionalization of the chain end with thermolabile azo functions yields polymeric initiator which was applied for the synthesis of blockcopolymers. Vinyl ethers functionalized with furylacrylic ester groups were polymerized and crosslinked via [2+2] cycloaddition.  相似文献   

16.
17.
18.
Three types of isopropenylmetallocene monomers were synthesized and subjected to polymerization and copolymerization by cationic initiators; (1) isopropenylferrocene (IF); (2) (η5-isopropenylcyclopentadienyl)dicarbonylnitrosylmolybdenum (IDM); and (3) 1,1′-diisopropenylcyclopentadienylstannocene (DIS), and related derivatives of each. IF was synthesized by a three-step procedure involving the acetylation of ferrocene, conversion of the latter to 2-ferrocenyl-2-propanol, and dehydration of the carbinol. IF was homopolymerized under various cationic initiation conditions, but only low molecular weight homopolymers were obtained. Copolymerization of IF with styrene and with p-methoxy-α-methylstyrene also gave only low molecular weight products. The formation of only low molecular weight polymers in all polymerization reactions is believed to result from the effect of the unusually high stability of ferrocenyl carbenium ions on its propagation reaction. The observed polymerization behavior of α-trifluoromethylvinylferrocene is in accord with this conclusion. IDM and DIS did not form polymeric products under cationic conditions, although copolymers could be obtained for each of these monomers and styrene with a free radical polymerization initiator (AIBN).  相似文献   

19.
Alternating copolymers of phenylvinyl ethyl ether ( I ) and phenylvinyl sec-butyl ether ( II ) with maleic anhydride (MAn) were prepared in bulk or in benzene solution by high-energy irradiation at dose rates of 42, 160, and 540 Gy/h, respectively. The overall energies of activation in copolymerization of I and II with MAn were 15.5 and 18.8 kJ/mol, respectively. The reaction proceeds by the free-radical mechanism and was found to be largely dependent on the bulkiness of the alkyl group. In the copolymerization of I and MAn, the molecular weight increases with conversion. By applying the model described by Shirota and co-workers, it was established that participation of charge-transfer-complex monomers increases with the increase of the total monomer concentration and with the bulkiness of the alkyl group in electron donor monomer.  相似文献   

20.
Diols and their formic or acetic esters can be carbonylated to give lactones or the corresponding hydroxyacid esters of ethers in the presence of carbonylruthenium iodide systems, [Ru(CO)3I3]/alkyl or metal iodide, at a temperature of 200°C and CO pressure of 10-20 MPa. The reaction in the case of 1,3-propanediol gives γ-butyrolactone, with a selectivity of 60-% . Side reactions of homologation to 1,4-butanediol derivatives and hydrogenolysis to n-propyl derivatives by H2 produced by the water gas shift reaction (WGSR) also occur, together with acid-catalyzed dehydration to give linear polypropylene glycols, α,ω-diols with more than 3 carbon atoms in the chain preferentially give hydroxyacid esters and ethers.The cyclic ether by-products and linear polyether by-products can be further activated and carbonylated under the reaction conditions to give lactones or hydroxy-acid derivatives thus increasing the total yield of carbonylation products. The formation of H2 by WGSR involving water produced by the acid-catalyzed dehydration reactions, and the subsequent hydrogenolysis and homologation reactions cannot be avoided.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号