首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Curing behavior of amino-functionalized carbon nanotubes (ACNT) used as reinforcing agent in epoxy resin has been examined by thermal analysis. Experiments performed as per supplier’s curing conditions showed that modification of the curing schedule influences the thermo-mechanical properties of the nanocomposites. Specifically, the glass transition temperature (Tg) of ACNT-reinforced composites increased likely due to the immobility of polymer molecules, held strongly by amino carbon nanotubes. Further, a set of composites were prepared by implementing the experimentally determined optimal curing schedule to examine its effect on the mechanical properties of different GFRP compositions, while focusing primarily on reinforced ACNT and pristine nanotube (PCNT) matrix with silane-treated glass fibers. From the silane treatment of glass fibers in ACNT matrix composition it has been observed that amino silane is much better amongst all the mechanical (tensile and flexural) properties studied. This is because of strong interface between amino silane-treated glass fibers and modified epoxy resin containing uniformly dispersed amino-CNTs. On the other hand, PCNT GFRP composites with epoxy silanes demonstrated enhanced results for the mechanical properties under investigation which may be attributed to the presence of strong covalent bonding between epoxy silane of glass fiber and epoxy–amine matrix.  相似文献   

2.
Functionalized multiwalled carbon nanotubes were successfully deposited on carbon fibers using four different techniques including dip coating, hand layup, spray up and electrophoretic deposition (EPD). A uniform coating of nanotubes was achieved from EPD in comparison to other coating techniques. Later nanotube-coated fibers by EPD were introduced in epoxy resin to investigate interfacial mechanical properties of the developed hierarchical composites by vacuum bagging technique. The increases in flexural and interlaminar shear properties up to 15% and 18% were observed in composites containing nanotube-coated carbon fibers than composites with virgin carbon fibers, respectively. Microscopic observation revealed the proper impregnation of multiscale reinforcements, i.e., carbon fibers and carbon nanotubes, in resin along with the modification of fiber/matrix interface due to the presence of nanotubes at interface. Finally, the mechanisms for improved mechanical properties were identified along with the presentation of a schematic model for better understanding of the improved performance of hierarchical composite after depositing uniformly dispersed nanotubes on carbon fibers.  相似文献   

3.
《Composite Interfaces》2013,20(2):113-125
The fiber-matrix adhesion mechanism in high modulus pitch-based carbon fiber-epoxy matrix composites has been studied. The surface morphology and chemistry of the carbon fibers were examined by microscopic (SEM, STM), thermodynamic and spectroscopic (XPS, Raman) techniques. The interlaminar shear strength and transverse tensile strength of the composites made from surface-treated and untreated fibers were also obtained. In the microscopic analysis, there was no difference in the surface roughness between the surface-treated and untreated fibers. In the thermodynamic and spectroscopic analyses, surface treatment of the carbon fibers increased the amount of surface oxygen. The results indicated that the major role of the surface treatment on the carbon fiber-epoxy resin adhesion is not the mechanical interlocking effect by the surface roughness. The formation of surface oxygen-containing functional groups is assumed to account for the increase in fiber-matrix interfacial adhesion.  相似文献   

4.
《Composite Interfaces》2013,20(1):67-74
In this paper, composite materials of short carbon fibers (CFs) and a thermosetting epoxy were prepared in three different ways: without curing, thermal curing, and thermal curing followed by microwave irradiation. Mechanical properties of the three kinds of CF reinforced plastic (CFRP) composites were studied to explore the effect of microwave irradiation. Microscopic study with the aid of a scanning electron microscope (SEM) was performed on fractured composite surfaces to identify the principle features of failure. Degree of polymerization of the epoxy resin in the three CFRP composites was evaluated by infrared (IR) spectroscopy. The microwave irradiated CFRP exhibited mechanically ductile behavior even though its highest degree of polymerization. Use of microwaves and resultant stronger physico-chemical linkage at the interface between CF and epoxy resin are the main feature of this study.  相似文献   

5.
The effect of oxygen plasma treatment on the non-equilibrium dynamic adsorption of the carbon fabric reinforcements in RTM process was studied. 5-Dimethylamino-1-naphthalene-sulfonylchloride (DNS-Cl) was attached to the curing agent to study the change of curing agent content in the epoxy resin matrix. Steady state fluorescence spectroscopy (FS) analysis was used to study this changes in the epoxy resin at the inlet and outlet of the RTM mould, and XPS was used to study the chemical changes on the carbon fiber surfaces introduced by plasma treatment. The interlaminar shear strength (ILSS) and flexural strength were also measured to study the effects of this non-equilibrium dynamic adsorption progress on the mechanical properties of the end products. FS analysis shows that the curing agent adsorbed onto the fiber surface preferentially for untreated carbon fiber, the curing agent content in the resin matrix maintain unchanged after plasma treatment for 3 min and 5 min, but after oxygen plasma treatment for 7 min, the epoxy resin adsorbed onto the fiber surface preferentially. XPS analysis indicated that the oxygen plasma treatment successfully increased some polar functional groups concentration on the carbon fiber surfaces, this changes on the carbon fiber surfaces can change the adsorption ability of carbon fiber to the resin and curing agent. The mechanical properties of the composites were correlated to this results.  相似文献   

6.
《Composite Interfaces》2013,20(2-3):249-267
The effect of atmospheric-pressure plasma treatment on high strength PAN-based carbon fibers had been studied in terms of fiber surface energetics and mode I and II interlaminar fracture toughness of unidirectional carbon fibers/epoxy matrix composites. The surface characterization of plasma treated carbon fibers was investigated by X-ray photoelectron spectroscopy (XPS) and contact angles. As a result, the plasma treatment changed the surface properties of the carbon fibers, mainly through formation of oxygen functional groups like hydroxyl, carbonyl, and carboxyl groups. According to contact angle measurements, it was observed that plasma treatment led to an increase in surface free energy of the fibers, mainly due to the increase of its specific component. Fracture toughness test results employing double-cantilever beam (DCB) and end notched flexure (ENF) specimens also showed that the increase in specific components or hydrogen bonding between the –OH groups on carbon fibers and the =O ring in epoxy matrix resins played an important role in improving the degree of adhesion at interfaces, resulting in an increase in the interfacial fracture toughness of the composites studied.  相似文献   

7.
《Composite Interfaces》2013,20(5-6):443-458
The mechanism with which the fiber-matrix interfacial strength exerts its influence on the compressive strength of fiber reinforced composites has been studied by measuring the axial compressive strength of carbon fiber/epoxy resin unidirectional composite strands having different levels of interfacial shear strength. The composite strands are used for experiments in order to investigate the compressive strength which is not affected by the delamination taking place at a weak interlayer of the laminated composites. The interfacial strength is varied by applying various degrees of liquid-phase surface treatment to the fibers. The efficiency of the compressive strength of the fibers utilized in the strength of the composite strands is estimated by measuring the compressive strength of the single carbon filaments with a micro-compression test. The compressive strength of the composite strands does not increase monotonically with increasing interfacial shear strength but showes lower values at higher interfacial shear strengths. With increasing interfacial shear strength, the suppression of the interfacial failure in the misaligned fiber region increases the compressive strength, while at higher interfacial shear strengths, the enhancement of the crack sensitivity decreases the compressive strength.  相似文献   

8.
Surface analysis of plasma grafted carbon fiber   总被引:1,自引:0,他引:1  
The surface characteristics of carbon fibers were studied by X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), and wetting measurements. The surface of carbon fiber was modified by means of plasma graft silsesquioxane. The oxygen/carbon and silicon/carbon ratio increased rapidly after treatments. Fitting the C 1s, O 1s, and Si 2p spectra demonstrated that new photopeaks were emerged, which were indicated C-Si, Si-O groups, respectively. The degree of surface roughness and the wettability of carbon fiber surface were both increased by plasma graft silsesquioxane. The results may shed some light on the design of the appropriate surface structure, which could react with resin, and the manufacture of the carbon fiber reinforced composites.  相似文献   

9.
《Composite Interfaces》2013,20(3):257-275
Viscous and elastomeric silicones have been applied as interlayers to carbon fibers in order to develop a tougher, micro-crack resistant, thermally stable polyimide (PMR-15) composite. Carbon fiber is continuously coated with very high molecular weight polydimethylsiloxane (PDMS) and polyvinyl-methylsiloxane (PVMS). Dynamic mechanical properties of the composites have been determined and compared with uncoated carbon fiber reinforced PMR-15 polyimide composites. The presence of the interlayer is shown by the appearance of a new relaxation peak. The peak temperature is found to be a good indication of the degree of the cure of the silicone elastomer. Comparison of the storage moduli of uncoated and coated carbon fiber composites at the service temperature range of the composites indicates that the presence of the silicone interlayer affects the shear moduli of the composites. Apparent activation energy of the α transition of the matrix in the modified composites varies with the amount of interlayer and composition in concert with the impact strength.  相似文献   

10.
《Composite Interfaces》2013,20(5):443-453
Three different temperature schemes were applied on carbon fiber/epoxy composite to elucidate the effect on interfacial shear strength (IFSS) and inter-laminar shear strength (ILSS). It showed that carbon fiber/epoxy IFSS was significantly influenced by the processing temperature, while ILSS was only slightly changed. Moreover, the mechanical properties revealed no necessary relationship between the micro- and macro-interfacial strengths with the properties of epoxy matrix. Among all the temperature schemes, Pro2 (the one-platform curing scheme with relatively rapid heating rate) produced highest IFSS and ILSS. Fourier transform infrared spectroscopy analysis demonstrated that the sizing agent can chemically react itself and also react with epoxy resin at temperature 180?°C. The resin rheological data showed that different temperature schemes can considerably impact diffusion behavior of the resin molecules. Hence, the highest interfacial strengths for Pro2 scheme were ascribed to large extent of chemical reactions and good inter-diffusion between components, at the interface region.  相似文献   

11.
《Composite Interfaces》2013,20(3):143-156
In this paper, interphase properties of carbon fibre/epoxy resin single-fibre model and unidirectional (UD) composites are reported. To study the contribution of the carbon fibre surface chemistry and morphology and of the resin itself to the overall properties of the composites, untreated, oxidized and sized fibres are used with bi- and tetrafunctional, diglycidylether of Bisphenol A, DGEBA and tetraglycidyl 4,4'-diaminodiphenylmethane, TGDDM-based resins, cured with amine and anhydride hardeners. Adsorption measurements and single fibre contact angle experiments, as well as the pull-out test were applied to characterize the surface of carbon fibre and the interfacial shear strength with different matrices. It was shown that the presence of the size on the surface can drastically affect the wettability as well as the starting rate of the cure reaction of epoxide in the vicinity of the fibre surface, as revealed by FTIR microscopy. Different elastic-plastic behavior of model composites before debonding is found for untreated, oxidized and sized fibres, due to the various interphase structures formed. Both micro-and macromechanical properties of the composites are found to be significantly affected by the matrix properties. The role of the surface treatment of fibers becomes especially important in high performance resin systems.  相似文献   

12.
Multiscale glass fiber epoxy matrix composites containing nanodiamonds were fabricated using vacuum bagging technique. Three different loadings of nanodiamonds were incorporated in epoxy resin after their functionalization through ozone-treatment, i.e., 0.1, 0.3 and 0.5 wt%. The functionalization of nanodiamonds was confirmed by infrared spectroscopy, which improved the dispersion of nanodiamond in epoxy resin thus improving the mechanical properties. Tensile, compression, flexural and interlaminar shear properties of the composites were improved. The tensile, compression and flexural strengths improved up to 36, 56 and 30% by the addition of 0.5 wt% nanodiamonds while the corresponding moduli increased to 30, 125 and 46%, respectively. An improvement of 38% in interlaminar shear strength was observed. The microscopy of the composites was performed using optical and electron microscopy and proper impregnation of glass fibers and the absence of the agglomerates of nanodiamonds were ensured. The homogeneous dispersion of nanodiamonds and their adhering role at fiber/matrix interface improved the mechanical properties of the composites. The developed composites are ideal candidate materials for engineering applications demanding high specific mechanical properties.  相似文献   

13.
The chemistry and morphology of the carbon fiber surface are important parameters which govern the properties of the interfacial region and the adhesion between carbon fibers and polymeric matrix in carbon fiber reinforced polymers. In the presented paper the surface chemistry of the fibers is varied while the surface morphology is left unchanged. We analyze chemical functionality and morphology of carbon fiber surfaces showing different degrees of activation, together with the adhesion of these fibers to an epoxy matrix and the width of the interfacial region between fiber and matrix. An increase of the oxygen and nitrogen concentration of the fiber surface, in particular in form of carboxyl functional groups, results in a significant increase of interfacial shear strength. Also the width of the interphase, as determined by scanning force microscopy in nanomechanical mode, depends on the activation degree of the carbon fibers. However, no direct correlation between interphase width, surface chemistry and fiber matrix adhesion is found, suggesting no direct influence of interphase width on adhesion properties.  相似文献   

14.
Aramid fiber/epoxy composites have been treated by ultrasound during the winding process to enhance the adhesion. According to the ultrasonic treatment interlaminar shear strength (ILSS) of composites has been greatly improved. Dynamic wetting method, XPS and AFM are used to examine the microscopic properties of resultant composites. The enhanced ILSS is attributed to the ultrasonic cavitation, which improves the wetting between aramid fibers and resins.  相似文献   

15.
Interfacial adhesion between carbon fiber (CF) and epoxy resin in carbon fiber-reinforced epoxy composite, which was prepared by different heating process such as semiconductor microwave (MW) device and conventional electric oven, has been evaluated quantitatively. The interfacial shear strength (IFSS) between CF and epoxy resin, which was an indicator of adhesion on the interface, was measured by a single fiber fragmentation test. The single fiber fragmentation test showed that the IFSSs of the prepared specimens were different by heating methods. In the case of MW process, the curing reaction of epoxy resin on the CF interface would be progressed preferentially due to the selective heating of CF, resulting that the IFSSs of specimens prepared by MW irradiation were increased by enhancing the output power of MW. However, the IFSSs of the specimens were decreased by excessively high output power because the matrix resin on the CF interface was thermally degraded. As results, by optimizing the MW conditions of output power and irradiation time, the IFSS of the sample cured by MW was increased by 21% as compared to oven-heated one. It was found that the interfacial adhesion between CF and epoxy resin would be improved by the MW-assisted curing reaction on the surface of CF.  相似文献   

16.
In this article, polyimide (PI) fibers were modified by alkali treatment, and PI fiber-reinforced epoxy composites were fabricated. The effects of different alkali treatment times on the surface properties of the PI fibers and the adhesion behaviors of PI fiber/epoxy composites were studied. The surface morphologies, chemical compositions, mechanical properties, and surface free energy of the PI fibers were characterized by atomic force microscopy, X-ray photoelectron spectroscopy, single-fiber tensile strength analysis, and dynamic contact angle analysis, respectively. The results show that alkali treatment plays an important role in the improvement of the surface free energy and the wettability of PI fibers. We also found that, after the 3 min, 30 °C, 20 wt% NaOH solution treatment, the fibers possessed good mechanical properties and surface activities, and the interlaminar shear strength of the composites increased to 64.52 MPa, indicating good interfacial adhesion properties.  相似文献   

17.
Polymer nanocomposites of epoxy resin containing multiwall carbon nanotubes (external diameter ~30 ± 10 nm, approximate length 10–20 μm) are studied using a rheological approach to determine the stage of debundling of the nanofiller in the epoxy matrix and the development of the rheological properties and structure with time. The role of processing for nanotube dispersion and structure formation is also determined by polarized microscopy and Raman spectrometry. Functionalization with amine groups is applied for part of the samples (mixing the nanotubes in amine hardener followed by mixing in appropriate amounts of epoxy resin). Further on the experimental procedure has been optimized and samples within the concentration range from 0 to 1.0 wt% have been prepared by applying high speed mechanical mixing and ultrasonic treatment with power of 250 W. The results show that chemical functionalization with amine groups contributes to significant changes in the rheological properties and hence in the structure of the composites, as proved by Raman and POM results, indicating better deaggregation of the carbon nanotubes in the amine hardener and chemical bonding of the amine groups attached to the functionalized nanotube surface with the epoxy matrix. The evolution of the dynamic viscosity in the process of polymerization reveals some interesting aspects as retarded curing in the viscometer cell, compared to the control sample under the same conditions, prolonged polymerization time owing to the applied shear rates and carbon nanotube content.  相似文献   

18.
The surface carbon nanotubes (CNTs) were modified to generate functional reactors by using the sonicication method to distribute CNTs evenly among epoxy resin, which was prepared into nano-prepreg with carbon fibers. Additionally, based on various proportions of modified and unmodified CNTs, the mechanical properties and conductivities of the composite, as well as, the characteristics of material subjected to various temperature conditions were investigated. Experimental results indicate that increasing CNT content enhances the mechanical strength and electrical properties. At various temperatures, the mechanical strength drops with increase in temperature because different expansion coefficients differ between fiber and epoxy resin. Finally, the failure surface of nanocomposite was examined using scanning electron microscopy (SEM). Finally we provide a discussion of the failure mechanism of the material.  相似文献   

19.
《Composite Interfaces》2013,20(8):499-509
The environmental resistance properties of carbon fiber (CF), with various surface modifications, reinforcing epoxy resin composites have been studied by a microbond test. The results of cooling–heating cycling between ?40 and 95?°C indicate that the introduction of the flexible poly(n-butyl acrylate) (PnBA) blocks into the interface can effectively decrease the interfacial degradation rate, induced by interfacial thermal stress. After 50 cooling–heating cycles, the interfacial shear strength between CF and epoxy resin was still as high as 32.69?±?2.13?MPa. The results of hygrothermal treatment by immersing the composites in hot water show that assembly morphology of the diblock copolymer hydroxyl-terminated poly(n-butyl acrylate-b-glycidyl methacrylate) (OH-PnBA-b-GMA) at the interface can decrease the interfacial water absorption and thus increase the hygrothermal resistance of the composite. Besides, the length of PnBA block in the diblock copolymer influenced the interfacial properties of the composite in a hygrothermal environment.  相似文献   

20.
Commercially available CNFs (diameter 30–300 nm) have been used to develop both bulk and coating epoxy nanocomposites by using a solvent-free epoxy matrix powder. Processing of both types of materials has been carried out by a double-step process consisting in an initial physical premix of all components followed by three consecutive extrusions. The extruded pellets were grinded into powder and sieved. Carbon nanofibers powder coatings were obtained by electrostatic painting of the extruded powder followed by a curing process based in a thermal treatment at 200 °C for 25 min. On the other hand, for obtaining bulk carbon nanofibers epoxy composites, a thermal curing process involving several steps was needed. Gloss and mechanical properties of both nanocomposite coatings and bulk nanocomposites were improved as a result of the processing process. FE-SEM fracture surface microphotographs corroborate these results. It has been assessed the key role played by the dispersion of CNFs in the matrix, and the highly important step that is the processing and curing of the nanocomposites. A processing stage consisted in three consecutive extrusions has reached to nanocomposites free of entanglements neither agglomerates. This process leads to nanocomposite coatings of enhanced properties, as it has been evidenced through gloss and mechanical properties. A dispersion limit of 1% has been determined for the studied system in which a given dispersion has been achieved, as the bending mechanical properties have been increased around 25% compared with the pristine epoxy resin. It has been also demonstrated the importance of the thickness in the nanocomposite, as it involves the curing stage. The complex curing treatment carried out in the case of bulk nanocomposites has reached to reagglomeration of CNFs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号