首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Composite Interfaces》2013,20(7-9):687-709
The combined effects of alkali and ultrasound treatment of wood flour on the mechanical properties of polypropylene-based wood/plastic composites (WPCs) were examined. FT-IR measurements confirmed that the alkali treatment removed both hemicellulose and lignin from the wood, and there was an increase in the number of hydroxyl groups on the cellulose surface. This process was promoted by ultrasound treatment. Mechanical testing of injection-molded WPC samples revealed that alkali treatment improved both composite strength and modulus when polypropylene grafted with maleic acid was used as a coupling agent. The strength increase is due to improved adhesion between the fiber and matrix, while improved modulus is due to the removal of lignin and hemicellulose that are not as stiff as cellulose. Polarized optical microscopy showed the presence of well-defined polymer crystals on the surface of the modified wood, and this is also responsible for the improved mechanical properties. It is conclusively demonstrated that the combination of chemical treatment of wood and ultrasound assistance is more effective in improving the mechanical properties of the composites than the use of chemical treatment alone.  相似文献   

2.
It is well-known that ultrasound has been studied for its cavitation, mechanical and thermal effects. As a pretreatment technology, ultrasonic alkali treatment has attracted much attention in the field of biomass biochemical transformation. In this study, the structural and dynamic changes of wood cell walls during ultrasound-water, alkali, and ultrasound-alkali treatments were investigated by stereoscopic microscopy, confocal Raman microscopy, Fourier-transform infrared spectroscopy, and X-ray diffraction. The results indicated that the ultrasound-water, alkali, and ultrasound-alkali treatments had the effect of removing extractives from conduits. The uniform self-shrinking samples with shrinkage conduits were obtained by the alkali and ultrasound-alkali treatments. All of the treatments affected the relative content, structure and distribution of the chemical components in the wood cell walls. Compared with water-immersion samples, the relative content of hemicellulose of the treated samples reduced from 32.31% to 7.02% for ultrasound-8% NaOH treated samples. For the signal intensity of lignin, ultrasound-water treated and ultrasound-alkali treated samples displayed a more significant reductions than the alkali treated samples in the cell wall region. The crystal zone and amorphous zone of cellulose coexisted before and after the treatment, for all of the treated samples, and particularly for the ultrasound-assisted treated samples, the crystallinity increased from 38.15% for water-immersion samples to 57.42% for ultrasound-8% NaOH treated samples.  相似文献   

3.
In this investigation, sisal fibres were treated with the combination of alkali and high intensity ultrasound (HIU) and their effects on the morphology, thermal properties of fibres and mechanical properties of their reinforced PP composites were studied. FTIR and FE-SEM results confirmed the removal of amorphous materials such as hemicellulose, lignin and other waxy materials after the combined treatments of alkali and ultrasound. X-ray diffraction analysis revealed an increase in the crystallinity of sisal fibres with an increase in the concentration of alkali. Thermogravimetric results revealed that the thermal stability of sisal fibres obtained with the combination of both alkali and ultrasound treatment was increased by 38.5 °C as compared to the untreated fibres. Morphology of sisal fibre reinforced composites showed good interfacial interaction between fibres and matrix after the combined treatment. Tensile properties were increased for the combined treated sisal fibres reinforced PP composites as compared to the untreated and pure PP. Tensile modulus and strength increased by more than 50% and 10% respectively as compared to the untreated sisal fibre reinforced composite. It has been found that the combined treatment of alkali and ultrasound is effective and useful to remove the amorphous materials and hence to improve the mechanical and thermal properties.  相似文献   

4.
ABSTRACT

The chemical changes that occur in wood and wood components (cellulose, holocellulose and lignin) following treatment with liquid ammonia and solvated electrons (e? s,) in liquid ammonia have been investigated using FTIR spectroscopy.

When ammonia penetrates into a wood structure, all carboxylate groups will react with ammonia to form ammonium salts, aldehydic and ketonic groups will follow a similar reaction to produce imines, and ester groups will react to forni amides.

After treatment with (e? s) in liquid ammonia, wood samples show diminished absorption around 15 13 cm?1, a position corresponding to aromatic groups, and diminished absorption peaks associated with aldehydic, ketonic, and ester groups.

The overall changes in the IR spectra of cellulose in liquid ammonia and (e? s) in liquid ammonia are not dramatic. The IR spectra of the isolated holocellulose after treatment with (e? s) in liquid ammonia have intensities and band shape similar to those of cellulose. The isolated lignin behaves in a manner similar to wood, in that the liquid ammonia causes some decrease in the intensities of absorptions associated with C-O and C=O bands, and increase in strength of the amide functional group at 1600 cm?1. The resulting extracts of wood, following treatment with (e? s) in liquid ammonia, appear to loose their “aromaticity”.

Because wood has long been used, and still is used extensively as an important constructional material, the changes in mechanical characteristics caused by the action of various reducing agents appears to have been an important area of scientific interest. The following review focuses on the chemical changes in the functional groups of the surface moieties of wood when treated with a reducing agent, such as (e? s + NH3liq), using infrared spectroscopy.  相似文献   

5.
倾斜阔叶木枝干弯曲部位的上端在拉伸应力影响下通常会形成受拉木.区别于受拉伸部位下方的对应木,受拉木细胞壁通常会出现理化特性变异的现象,主要归因于细胞次生壁内侧胶质层的形成.采用透射电子显微成像技术揭示了黑杨受拉木与对应木纤维细胞壁分层结构特点,并借助532 nm共聚焦显微拉曼光谱成像(空间分辨率约为0.5μm)及图像叠...  相似文献   

6.
真空热处理人工林落叶松木材吸湿性变化机理研究   总被引:1,自引:0,他引:1  
热处理是一种环境友好型的木材改性方法,可提高木材的耐腐性和尺寸稳定性。研究以落叶松木材为试验材料,在处理温度200 ℃的条件下,对其进行了不同时间的真空热处理。利用动态水蒸气吸附(DVS)对热处理前后木材吸湿性的变化进行了表征,通过傅里叶变换红外光谱(FTIR)、X射线光电子能谱(XPS)和X射线衍射(XRD)分析了热处理前后木材化学组分和结构变化,通过化学变化分析阐明了热处理木材吸湿性变化的作用机制。结果表明:真空热处理落叶松木材的平衡含水率降低,热处理木材的平衡含水率随热处理时间的延长呈逐渐下降的趋势。结合红外光谱和光电子能谱发现,热处理后木材纤维素和半纤维素等化学成分发生降解,木质素发生交联缩合反应,使得吸湿性基团含量减少,碳元素与氧元素含量发生变化,氧碳比降低,从C原子的结合形式来看,热处理材的C1含量增加,C2和C3含量降低,这些化学变化使得热处理材的吸湿性降低。此外,真空热处理未破坏木材的结晶结构,木材的相对结晶度随真空热处理时间的延长而增大,结晶度的增大减少了纤维素分子链上吸水性基团的数量,从而降低了木材的吸湿性。  相似文献   

7.
考古出土/出水的饱水木质文物保存状态千差万别,内部降解不均匀、差异大,又有取样的限制,造成许多必需的材性定性定量分析和保护效果评价测试难以进行,因此亟需开发实验室可控制备的人工降解饱水木材技术,以获取大量重复性好、性质均匀的样品供研究使用。以健康黄松为原料,探索使用NaOH-真空浸渍-高压水热的联用法制备人工降解饱水木材,取得了初步的成功。制备的人工降解饱水木材的最大含水率(MWC)为260%,340%和575%,分别达到国际上普遍认定的低、中、高度降解饱水考古木材的MWC水平。红外光谱(FTIR)显示制备的人工降解饱水木材纤维素结构保存较为完好,氢键部分断裂;半纤维素显著降解,主链、侧链有断裂现象,1 732 cm-1特征峰消失;木质素有部分降解,1 508 cm-1处木质素芳香环骨架振动等吸收峰相对强度降低并发生偏移。近红外反射光谱(NIR)显示,制得的样品的三大素均发生降解,半纤维素降解程度最高,木质素次之,木质素相对含量升高,表现为C═O相对含量增加。在1 536~1 580 nm区域形成宽峰且峰强度降低,表明纤维素结晶区分子内部、分子间氢键结构均发生断裂。NaOH-真空浸渍-水热联用法与国际上现用的常压高浓度NaOH浸渍法相比,所需NaOH溶液浓度从50%以上降低到1%、处理时间从数月缩短至10 h,制备效率大大提升,所制得的饱水木材的最大含水率显著增大,与考古木材相近,细胞壁化学结构降解程度显著增大。NaOH-真空浸渍-水热联用法有望实现在实验室可控、快速、大量制备不同降解程度的人工降解饱水木材,对饱水木质文物保护水平的提高具有一定的促进意义。  相似文献   

8.
《Composite Interfaces》2013,20(1):27-37
In this work, Musaceae isolated vascular bundles from rachis agro-industrial residues were evaluated as a potential source of cellulose microfibrils. For vascular bundle isolation, a biological retting was used. For cellulose microfibril isolation, two different alkaline treatments (sodium hydroxide or potassium hydroxide combined with bleaching and acid steps) were used in conjunction with a mechanical process. Cellulose microfibrils using both alkaline processes were successfully isolated, and the presence of non-cellulosic components, especially lignin and some hemicellulose as arabinose and galactose were reduced. In spite of an important amount of oxides being removed during the biological retting, XRF analysis revealed that calcium minerals were still present in the vascular bundles, and they can affect the cellulose microfibril isolation. AFM micrographs of isolated samples revealed cellulose microfibril bundles, and their presence can be associated with non-cellulosic components still present in the samples. Thermal analysis showed that when potassium hydroxide was used, a higher reduction of lignin was observed. Nevertheless, X-ray diffractions indicated no change in the crystallization pattern of cellulose I had occurred due to the isolation process used.  相似文献   

9.
Nitrogen in biomass is mainly in forms of proteins (amino acids). Glycine, glutamic acid, aspartic acid, leucine, phenylalanine and proline are the major amino acids in agricultural straw. The six amino acids were pyrolyzed individually at 800 °C in a tubular reactor in an argon atmosphere. Each amino acid sample was then pyrolyzed individually with cellulose, hemicellulose or lignin with 1:1 mixing ratio by weight under the same condition. The emissions of HCN and NH3 were detected with a Fourier transform infrared (FTIR) spectrometer. The extent of interaction between the amino acids with cellulose, hemicellulose or lignin was determined by comparing the yields of HCN and NH3 from co-pyrolysis with those from single amino acid pyrolysis under the same condition. The results indicate that the structure of the amino acid has a significant effect on the nitrogen transformation during pyrolysis. The mixtures undergo solid-state decomposition reactions during co-pyrolysis. The extent of interaction between the amino acids with cellulose, hemicellulose or lignin depends on the amino acid types and the components in biomass. Although single proline and leucine form no char, they give a significant amount of nitrogen-containing char when co-pyrolyzed with cellulose, hemicellulose and lignin. HCN and NH3 yields and nitrogen conversion pathway from amino acid pyrolysis are influenced by cellulose, hemicellulose and lignin.  相似文献   

10.
Thermogravity analysis (TGA) and differential scanning calorimetric (DSC) analysis, as well as dynamic thermal analysis (DMA), were carried out to study the interfacial interaction between wood flour (WF) and starch/cellulose acetate (SCA) blend. It was found that the main components in the compounds, namely, starch, cellulose, and cellulose acetate, started to decompose at around 330°C, a characteristic temperature for breaking glycoside-linked glucose units. Complexation of lignin in WF with amylose in SCA occurred during compounding, which gave rise to new crystallites that have a melting point of around 160°C. Hydrogen bonding is believed to play a key role in the crystallization. With increasing WF content, both the glass transition temperature and softening temperature increase as a result of the restricted molecular chain mobility imposed by rigid cellulose filaments. In addition, the DMA data revealed that amylose can occur as linkages in the crystallites. All these observations indicated that the interfacial adhesion between SCA and WF is relatively strong, even in absence of a coupling agent.  相似文献   

11.
原位聚合制备木材/羟甲基脲复合材料及其表征   总被引:1,自引:0,他引:1  
以杨木生材为原料,采用原位聚合方法制备木材/羟甲基脲复合材料.羟甲基脲在脉冲式压力的作用下浸渍到木材内,在热压干燥过程中,经过原位聚合制备木基复合材料.根据国标对改性前后的木材化学成分进行了分析,并利用X射线光电子能谱(XPS)、核磁共振分析(3C-NMR)、EDXA对改性前后木材中碳和氮元素含量、分布以及官能团变化进...  相似文献   

12.
As an initial step to increase the use of renewable biomass resources, this study was aimed at investigating the effects of ultrasound pretreatment on structural changes of wood. Samples were pretreated by ultrasound with the power of 300 W and frequency of 28 kHz in aqueous soda solution, aqueous acetic acid, or distilled water, then pretreated and control samples were characterized via X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), and thermogravimetric analysis (TGA). The results shown that ultrasound pretreatment is indeed effective in modifying the physiochemical structure of eucalyptus wood; the pretreatment decreased the quantity of alkali metals (e.g., potassium, calcium and magnesium) in the resulting material. Compared to the control group, the residual char content of samples pretreated in aqueous soda solution increased by 10.08%–20.12% and the reaction temperature decreased from 361 °C to 341 °C, however, in samples pretreated by ultrasound in acetic solution or distilled water, the residual char content decreased by 12.40%–21.45% and there were no significant differences in reactivity apart from a slightly higher maximum reaction rate. Ultrasound pretreatment increased the samples’ crystallinity up to 35.5% and successfully removed cellulose, hemicellulose, and lignin from the samples; the pretreatment also increased the exposure of the sample to the treatment solutions, broke down sample pits, and generated collapses and microchannels on sample pits, and removed attachments in the samples.  相似文献   

13.
Solid-state nuclear magnetic resonance (NMR) spectroscopic analysis were carried out on recent and archaeological wood. Cross-polarization-magic-angle spinning13C NMR spectra obtained from samples of poplar (Populus sp.), oak (Quercus sp.), and silver fir (Abies alba) were examined in this study. The most relevant peaks were assigned according to the extensive literature in the area, and the differences observed discussed in terms of lignin and cellulose composition: by fixing a lignin reference signal intensity, the cellulose and hemicellulose moieties showed a strong depletion compared to the lignin signals in archaeological wood.  相似文献   

14.
碱木素的近红外光谱吸收机理的研究   总被引:1,自引:1,他引:0  
通过碱木素模型物对醌、邻醌和香兰素的溶液在800~900 nm的近红外光谱波段内的吸收谱图的对比发现,对醌和邻醌在此波段产生较强的吸收,而香兰素基本上没有吸收,证明了碱木素的醌型结构在800~900 nm波段内产生特征吸收。对银杏和夹竹桃磨木木素碱处理前后的溶液在800~900 nm波段内的吸光度的差别分析,发现夹竹桃的磨木木素的吸光度的相对变化更大,这是由于夹竹桃磨木木素经碱处理后产生了更多的醌型结构。这也是在硫酸盐法蒸煮过程中在800~900 nm波段内阔叶材的蒸煮液吸光度大于针叶材的蒸煮液吸光度的主要原因。  相似文献   

15.
碱水解法以其方便高效成为稻秸发酵制沼气中广泛采用的化学预处理方法,但是碱水解对于稻秸细胞壁中高聚物成分及其空间致密交联结构的作用机理有待深入研究。采用共聚焦显微拉曼光谱和透射电镜研究了NaOH碱处理对稻秸厌氧发酵产沼气的影响。首先对未处理稻秸和碱处理稻秸进行微米级空间分辨率的拉曼光谱面扫描,然后对这两类样本进行主成分分析,发现累计贡献率达99%的前两个主成分空间中两类样本分别呈射线状分布,两类样本分界线清楚表明碱处理导致稻叶组织的拉曼光谱响应特性发生了明显变化;进一步分析前两个主成分的载荷图,发现拉曼峰1 739,1 508和1 094 cm-1是影响主成分的重要谱带,而这三个拉曼峰分别归属于半纤维素、木质素和纤维素的拉曼散射效应;结合半纤维素、木质素和纤维素的拉曼特征峰和显微图像信息实现了组织细胞中三种成分的化学成像分析,发现碱处理破坏了稻叶组织中上述三种成分的致密空间结构,并使它们的含量明显减少,尤其是木质素。由此得出结论:共聚焦显微拉曼光谱可实现稻叶组织细胞中半纤维素、木质素和纤维素的无损检测,结合显微空间信息可实现稻秸中三种成分的化学成像分析,该研究有助揭示碱处理促进秸秆厌氧发酵产沼气的作用机理。  相似文献   

16.
利用X射线衍射技术与红外光谱分析真菌侵蚀的木材   总被引:1,自引:0,他引:1  
为了弄清真菌侵蚀木材的微细结晶构造与主成分官能团的变化,利用X射线衍射技术和红外光谱研究了分别经过黄孢原毛平革菌(PC)和棉腐卧孔菌(PP)侵蚀不同时间后毛白杨木材的结晶度、晶胞内层间距、晶粒宽度和主成分官能团的变化情况。结果表明:(1)PC与PP的侵蚀对木材纤维素结晶区的晶格构造没有影响,纤维素结晶区衍射角和层间距基本保持不变,但纤维素结晶度和晶粒宽度随侵蚀时间增加而呈减小的趋势,并且受PP侵蚀的要比受PC侵蚀的明显,表明PP侵蚀对纤维素的破坏程度要大于PC侵蚀;(2)半纤维素在侵蚀过程中其木聚糖被不同程度的降解,使得产物中羰基含量增加,PC与PP对半纤维素的降解效果与纤维素几近相同;(3)木质素受PC侵蚀后苯环被氧化裂解生成链烃,而受PP侵蚀的变化不明显。  相似文献   

17.
自然光中的紫外光在木材表面产生复杂的光化学反应,是木材在自然环境中老化降解速度最快,反应最强的化学过程。基于近红外光谱(NIRs)技术探讨了落叶松表面材色在340 nm波长紫外光照射条件下的老化状况。不同时间(180,540,900,1 080 h)试材弦切面经紫外光人工老化后,测量木材表面材色色度学指数,并采集NIRs信息。由NIRs二阶导数及其差谱图反映的信息,定性分析和讨论了木材表面化学组分基团的变化;定量建立基于偏最小二乘法(PLS)结合留一交叉验证的木材表面材色预测模型。结果表明:(1) 随着人工老化时间延长,木材表面明度值L*降低,红绿指数a*与黄蓝指数b*出现先增加后缓慢降低的趋势,表明发色基团的形成随着紫外光照射时间的延长而减少,在辐射时间540 h达到最大值,此外,色差值ΔE*与紫外光照射时间成正相关。(2) NIRs二阶导数在6 996,6 773以及6 287 cm-1等分别反映木材中纤维素非结晶区、半结晶区和结晶区的光谱吸光度随着老化时间的延长而增加,而5 986 cm-1反映木质素特征性谱带吸收峰随着紫外光老化时间的延长而降低,表明木质素出现降解。通过紫外光照射1 080 h与对照材的差谱分析发现,纤维素和半纤维素基团的特征峰差谱值为正,表明紫外光辐射后木材表面的纤维素和半纤维素相对含量增加,而木质素基团特征峰差谱值为负,表明经紫外光辐射后,木质素的降解导致其相对含量减少。这些结果与色度值测量结果相一致。(3) 基于NIRs建立的紫外光照射落叶松表面材色预测模型中,L*交叉验证模型决定系数(R2)为0.949,相对分析误差(RPD)为4.42;a*交叉验证模型R2是0.928,RPD是3.73;b*的交叉验证模型R2是0.831,RPD为2.43,建立的材色预测模型满足预测要求。  相似文献   

18.
Scanning transmission X-ray microscopy and micro carbon X-ray Absorption Near Edge Spectroscopy (C-XANES) can provide quantitative information regarding the distribution of the biopolymers cellulose, hemicellulose, and lignin in vascular plant cell walls. In the case of angiosperms, flowering plants, C-XANES may also be able to distinguish variations in lignin monomer distributions throughout the cell wall. Polysaccharides are susceptible to soft X-ray irradiation induced chemical transformations that may complicate spectral analysis. The stability of a model polysaccharide, cellulose acetate, to variable doses of soft X-rays under conditions optimized for high quality C-XANES spectroscopy was investigated. The primary chemical effect of soft X-ray irradiation on cellulose acetate involves mass loss coincident with de-acetylation. A lesser amount of vinyl ketone formation also occurs. Reduction in irradiation dose via defocusing does enable high quality pristine spectra to be obtained. Radiation induced chemical modification studies of oak cell wall reveals that cellulose and hemicellulose are less labile to chemical modification than cellulose acetate. Strategies for obtaining pristine C-XANES spectra of polysaccharides are presented.  相似文献   

19.
木材和水分关系的研究一直以来都是木材学研究领域的重点课题。木材中水分含量变化会使木材产生干缩湿胀,进而影响其尺寸稳定性,这关系到木材的实际应用。一般认为,木材产生变形的根本原因是木材化学组分中多糖类物质所含羟基与水分形成氢键作用的结果,而近红外光谱对有机材料含氢基团具有高度的敏感性。利用这一特点,为了能够实现对木材尺寸变化的在线快速检测,应用近红外光谱(near infrared,NIR)探讨了不同含水率木材与其尺寸稳定性之间的相互关系并建立了木材尺寸变化预测模型。通过对不同含水率下木材三个切面进行近红外扫描得到光谱信息,结合化学计量学方法,建立基于偏最小二乘法的木材径、弦向尺寸变化率的近红外光谱模型,并采用交叉检验的方式对模型进行验证。结果表明:不同含水率条件下的木材径、弦向尺寸变化率与相应的近红外光谱有很高的相关性,说明可以通过近红外光谱来研究木材的尺寸变化;研究建立的木材径、弦向尺寸变化模型的相关系数都大于0.90,均具有比较好的适用性;通过比较横切面上建立的径、弦向尺寸变化率模型,弦向好于径向。以上结果表明利用近红外光谱技术对木材的尺寸变化进行快速、准确的预测具有较好的可行性。  相似文献   

20.
拉曼光谱对高地钩叶藤纤维S2层主要成分的预测   总被引:1,自引:0,他引:1  
棕榈藤(rattan)属于棕榈科(Palmae)省藤亚科藤类植物,是一种产于热带森林中,仅次于木材和竹材的、重要的非木材林产品,具有很高的经济价值和开发前景。全球棕榈藤总共有13个属660余种,其中我国自然分布有4属37种5变种,但有较高经济价值的不到30种。由于目前对棕榈藤的细胞结构,尤其是藤纤维的细胞壁结构知之甚少,严重限制了对棕榈藤材的研究和加工利用。因此,为构建棕榈藤材纤维细胞壁结构模型,以高地钩叶藤(Plectocomia himalayana Griff.)为研究对象,对其基部、 2 m处、中部和梢部四个部位分别截取试样、软化、聚乙二醇包埋、切片。切片在室温下经0.2 mol·L-1的硼氢化钠(NaBH4)溶液浸泡5~6 h后用蒸馏水洗净,利用LabRam XploRA显微共聚焦拉曼光谱仪,采用逐点扫描显微探针成像方法获取光谱数据集。将获得的光谱数据利用LabSpec5软件进行处理,从而得到藤茎不同部位藤皮、藤中、藤芯处纤维细胞次生壁中层(S2)主要成分,即纤维素、半纤维素、木质素相对含量,并就相对含量在径向、轴向变异进行了分析。结果表明,在径向上,高地钩叶藤藤皮处纤维细胞S2层纤维素与半纤维素相对含量最高,木质素相对含量最低;而藤芯处纤维细胞S2层纤维素与半纤维素相对含量最低,木质素相对含量最高;藤中处纤维素、半纤维素及木质素相对含量居中。在轴向上即不同藤龄处,藤皮纤维细胞S2层纤维素和半纤维素的相对含量在2 m处最大,木质素的相对含量在梢部最大;藤芯纤维细胞S2层纤维素、木质素、半纤维素的相对含量分别在中部、 2 m处、基部处最大。藤皮、藤芯与藤茎一样,纤维细胞S2层纤维素相对含量最小值在梢部,半纤维素和木质素相对含量均在中部最少。分析可知,棕榈藤藤茎不同部位,藤纤维细胞壁中层(S2)纤维素、半纤维素及木质素相对含量是不同的。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号