首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 906 毫秒
1.
In this work we have synthesized TiO2 nanoparticles, using either a sol–gel base catalysed process in the interior of CTAB reversed micelles (TiO2 CTAB sol), or the neutralization of a TiO2/H2SO4 solution in the interior of AOT reversed micelles. From the absorption and emission data of the TiO2 nanoparticles it is possible to conclude that in the sol–gel route there remains alkoxide groups in the structure, originating transitions lower than the energy gap of TiO2 semiconductor. These transitions disappear in the neutralization procedure, where the alkoxide groups are absent in the structure. We have assigned the observed indirect and direct optical transitions according to the anatase band structure. TiO2 Langmuir-Blodgett (LB) films were prepared either by direct deposition of titanium isopropoxide or by deposition of the TiO2 CTAB sol. These films showed photoluminescence, which was attributed to band-gap emission and to surface recombination of defect states.  相似文献   

2.
Nitrogen doped TiO2 nanoparticles decorated on graphene sheets are successfully synthesized by a low-temperature hydrothermal method. The resulting GR-N/TiO2 composites are characterized by X-Ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), X-Ray photoelectron spectroscopy (XPS) and Transmission Electron Microscopy (TEM). The optical properties are studied using UV–visible diffuse reflectance spectroscopy (DRS), which confirms that the spectral responses of the composite catalysts are extended to the visible-light region and show a significant reduction in band gap energy from 3.18 to 2.64 eV. Photoluminescence emission spectra verify that GR-N/TiO2 composites possess better charge separation capability than pure TiO2. The photocatalytic activity is tested by degradation of methyl orange (MO) dye under visible light irradiation. The results demonstrate that GR-N/TiO2 composites can effectively photodegrade MO, showing an impressive photocatalytic enhancement over pure TiO2. The dramatically enhanced activity of composite photocatalysts can be attributed to great adsorption of dyes, enhanced visible light absorption and efficient charge separation and transfer processes. This work may provide new insights into the design of novel composite photocatalysts system with efficient visible light activity.  相似文献   

3.
Titania (TiO2)-based photocatalysts decorated with different amounts of indium oxide (In2O3) were prepared by a pore impregnating method and characterized by the Brunauer–Emmett–Teller (BET) method, X-ray diffraction (XRD), UV–Vis diffuse reflectance spectroscopy (DRS), and X-ray photoelectron spectroscopy (XPS). The separation efficiency of photogenerated charges was investigated using benzoquinone (BQ) as scavenger. The activities of the photocatalysts were evaluated by decolorization of methyl orange (MO) aqueous solution under ultraviolet-light irradiation. Compared to TiO2, In2O3/TiO2 composites show improved photocatalytic performance due to the coupling effect of TiO2 and In2O3, which greatly improves the separation of photogenerated electrons and holes.  相似文献   

4.
A ‘cap and dip’ method of adsorbing ruthenium di-2,2′-bipyridyl-4,4′-dicarboxylic acid diisocyanate (N3 dye) on a rutile TiO2 (110) surface was investigated using pyrocatechol as a capping molecule. This method involves cleaning the rutile surface in ultra-high vacuum (UHV), depositing pyrocatechol onto the surface to ‘cap’ the adsorption sites, removing from vacuum, ‘dipping’ in an N3 dye solution and returning to vacuum. Photoemission measurements following the return of the crystal to vacuum suggest that the pyrocatechol keeps the surface free from contamination on exposure to atmosphere. Photoemission spectra also indicate that the pyrocatechol capping molecules are replaced by the N3 dye in solution and that the N3 dye is adsorbed intact on the rutile TiO2 (110) surface. This technique may allow other large molecules, which are thermally unstable to evaporation in UHV, to be easily deposited onto TiO2 surfaces.  相似文献   

5.
A novel high surface area SiO2–TiO2 composite has been developed for elemental mercury vapor removal from combustion sources. The composite exhibits synergistic adsorption and photocatalytic oxidation. Mercury vapor in the gas stream is adsorbed, oxidized and stays on the composite. The composite has demonstrated a high mercury capacity (1512ug/g) although in its current 3-mm pellet form only the outer layer is effectively utilized. The loading of 13% TiO2 shows the best removal, both with and without UV irradiation. Increasing TiO2 loading beyond this level does not enhance the removal further. It has also been observed that the composite after being 'activated' by photocatalytic oxidation has better performance, probably due to the change of surface functional groups. The examination of the effects of flow velocity reveals that mass transfer is the rate limiting step. Relative humidity has been found to impede adsorption therefore decreasing the overall removal efficiency. By rinsing with acid, both the deposited mercury and composite can be regenerated.  相似文献   

6.
《Current Applied Physics》2014,14(6):856-861
TiO2 nanofibers (NFs) were fabricated by an electrospinning process and were used as scattering layers in dye-sensitized solar cells (DSSCs). The NF-coated photoanodes of the DSSCs were prepared with a variety of scattering layer thicknesses. The thickness effect of the scattering layer on the double-layered TiO2 nanoparticle (NP)/TiO2 NF structure was investigated through structural, morphological, and optical measurements. In the double-layered photoanode, the TiO2 NP layer plays a major role in dye adsorption and light transmission, and the TiO2 NF scattering layer improves the absorption of visible light due to the light scattering effects. The scattering effect of TiO2 NFs layer was examined by the incident monochromatic photon-to-electron conversion efficiency (IPCE) and UV–Vis spectrometry. The conversion efficiency for the 12 μm-thick photoanode composed of a 2 μm-thick TiO2 NF layer and 10 μm-thick TiO2 NP layer was higher than that of DSSCs with only TiO2 NPs photoanode by approximately 33%.  相似文献   

7.
Dye-sensitized solar cells (DSSCs) were fabricated using TiO2 nanoparticles (NPs), TiO2 nanotube arrays (NTAs), and surface-modified NTAs with a TiCl4 treatment. The photovoltaic efficiencies of the DSSCs using TiO2 NP, NTA, and TiCl4-treated NTA electrodes are 4.25, 4.74, and 7.47 %, respectively. The highest performance was observed with a TiCl4-treated TiO2 NTA photoanode, although in the case of the latter two electrodes, the amounts of N719 dye adsorbed were similar and 68 % of that of the NP electrode. Electrochemical impedance measurements show that the overall resistance, including the charge–transfer resistance, was smaller with NTA morphologies than with NP morphologies. We suggest that a different electron transfer mechanism along the one-dimensional nanostructure of the TiO2 NTAs contributes to the smaller charge–transfer resistance, resulting in a higher short circuit current (J sc), even at lower dye adsorption. Furthermore, the TiCl4-treated NTAs showed even smaller charge–transfer resistance, resulting in the highest J sc value, because the downward shift in the conduction band edge improves the electron injection efficiency from the excited dye into the TiCl4-treated TiO2 electrodes.  相似文献   

8.
T. Uma  K. Hattori  M. Nogami 《Ionics》2005,11(3-4):202-207
Nanostructures P2O5-Al2O3-SiO2 glasses were prepared by sol-gel method. The glasses were characterized by XRD, FTIR and TG/DTA methods. The average pore size of the glass was less than 3 nm as measured by N2 adsorption — desorption method. The thermal stability was measured as a function of decomposition temperature and weight loss calculations. Proton conductivities of all samples increased with an increase in relative humidity (40–90 %), indicating that continuous paths suitable for proton conduction were developed when glasses heat treated at 300 °C due to the adsorption of water. The temperature dependence of the conductivity for all compositions increases with increasing temperature in the range 30–90 °C with relative humidity 70 %. The overall conductivity was in the range 10−4–10−3 S/cm for compositions.  相似文献   

9.
Cr doped TiO2-SiO2 nanostructure thin film on glass substrates was prepared by a sol-gel dip coating process. X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) were used to characterize the structural and chemical properties of the films. A UV-vis spectrophotometer was used to measure the transmittance spectra of the thin film. The hydrophilicity of the thin film during irradiation and storage in a dark place was measured by a contact angle analyzer. The results indicated that Cr doping has a significant effect on the transmittance and super-hydrophilicity of TiO2-SiO2 thin film.  相似文献   

10.
Curcumin was coated on P25 TiO2 by using impregnation method from freshly prepared curcumin solution. The resulting products (Cur–TiO2–P25) was studied by several techniques such as X-ray diffraction, scanning electron microscopy, transmission electron microscopy, Fourier-transformed infrared spectroscopy, specific surface area by the Brunauer–Emmett–Teller method, and UV–Vis diffused reflectance spectroscopy. Experimental results revealed that impregnation of curcumin at 0.5, 3, 5, and 7 wt% did not affect the native phase of anatase and rutile in P25 significantly, however, it caused red shift of absorption onset in all curcumin-coated samples. The Cur–TiO2–P25 showed enhanced adsorption efficiency and increased photocatalytic activity under visible light with optimal result at 5 wt% curcumin content. Commercial anatase and rutile coated with curcumin (Cur–TiO2–an and Cur–TiO2–ru) were also prepared by the same method for the use in comparative studies of photodegradation of dyes. Cur–TiO2–an and Cur–TiO2–ru were also characterized with some selected equipment above but not as extensively as the Cur–TiO2–P25. Curcumin coating helped improve photocatalytic efficiencies of P25 and anatase but not for rutile. The mechanism of photocatalytic reaction was proposed that under visible light irradiation, curcumin molecule could act as dye sensitizing agent that injected electron into the conduction band of TiO2 leading to photodegradation of dyes.  相似文献   

11.
The structural,electronic,and optical absorption properties of TiO2 nanotube(TiO2NT)with Cun clusters(n=1–4)adsorbed on its surface have been investigated based on density functional theory calculations.The TiO2NT is constructed by rolling up a(101)sheet of anatase TiO2 around the[1 01]direction;the ground states of Cun/TiO2NT systems are determined by analyzing the average adsorption energies.Calculation results show that odd-even oscillations occur for the average adsorption energy,the Cu–O bond length,and the amount of transferred electrons,with the increase in Cun cluster size;and the Cun/TiO2NTs with odd n’s demonstrate stronger interaction between the Cun cluster and the TiO2NT.Also,the impurity states introduced by the Cun cluster to the band gap of TiO2NT cause an obvious redshift of the optical absorption spectrum toward the visible light region,especially for the even n cases.  相似文献   

12.
Polyimide (PI)/titanium dioxide (TiO2) nanocomposite films were prepared by a solution mixing method with different contents of TiO2 nanoparticles. The structural and thermal properties of pure PI and PI/TiO2 nanocomposite films were studied by several techniques such as scanning electron microscopy (SEM), atomic force microscopy (AFM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and thermally stimulated depolarization current (TSDC). The SEM and AFM measurements show the uniform dispersion of TiO2 nanoparticles in PI matrix, and it is also observed that the value of average roughness increases with increasing the contents of TiO2 nanoparticles. The XRD pattern shows the presence of TiO2 nanoparticles in PI matrix. It has been observed that the average crystallite size and percentage of crystallinity increase with content of the TiO2 nanoparticles. FTIR spectra depict the position of different bonds in PI and nanocomposite samples. The TSDC results represent the modification of polarization phenomenon after filling of PI by titania nanoparticles.  相似文献   

13.
《Current Applied Physics》2018,18(2):163-169
Nitrogen-doped TiO2 coatings on reduced graphene oxide were prepared via a sonochemical synthesis and hydrothermal process. The nanocomposites showed improved photocatalytic activity due to their large specific surface areas (185–447 m2/g), the presence of TiO2 in the anatase phase, and a quenched photoluminescence peak. In particular, GN3-TiO2 (nitrogen-doped TiO2 coatings on rGO with 3 ml of titanium (IV) isopropoxide) exhibited the best photocatalytic efficiency and degradation rate among the materials prepared. With nitrogen-doped on the reduced graphene oxide surface, the photocatalytic activity is enhanced approximately 17.8 times compared to that of the pristine TiO2. The dramatic enhancement of activity is attributed to the nitrogen contents and rGO effectively promoting charge-separation efficiency and providing abundant catalytically active sites to enhance the reactivity. The composites also showed improved pollutant adsorption capacity, electron–hole pair lifetime, light absorption capability, and absorbance of visible light.  相似文献   

14.
ABSTRACT

The present studies of the atomic Ag adsorbate on the substrate TiO2(110) explore the importance of dispersion (or van der Waals) energies for determining the structure of the adsorbed Ag atom, using density functional theory (DFT) supplemented by a dispersion energy treatment, within the PBE-D3 treatment. It is also of interest to explore electronic excitation by light absorption. Electronic density of states (EDOS) are obtained without and with Ag adsorbed on the TiO2(110), to find the extent of change on the density of valence, conduction and intraband states. This is done using the hybrid HSE06 functional, which is known to provide good values for the energy band gap of the substrate. A computationally efficient PBE?+?BG procedure for these structures, which corrects the PBE band gap, is implemented to generate accurate EDOSs and light absorption intensities versus photon energies. This is followed by a reduced density matrix treatment of the dissipative dynamics of light absorption, generating state-to-state oscillator strengths and photoabsorbances for the pure and nanostructured TiO2(110) surfaces. Adsorption of Ag leads to a noticeable increase in light absorption at visible wavelengths, and very large increases in the UV region of the spectrum.  相似文献   

15.
In this work we prepared TiO2 nano-powders and TiO2/Pt nano-composites via three synthesis methods (sol-precipitation, sonochemical method, hydrothermal method) starting with the same precursors and media. To evaluate and compare the physical properties of the prepared materials, X-ray diffraction analysis, BET measurements, FTIR spectroscopy, X-ray photoelectron spectroscopy (XPS) and electron microscopy (TEM, HRTEM, SAED) were applied. The results showed changes to the TiO2 phase composition and crystallinity, the specific surface area as well as the platinum’s particle shape and size, depending on the method of synthesis. To determine the photocatalytic efficiency of the prepared materials, the photocatalytic discoloration of the methylene blue solution was evaluated using UV–Vis spectroscopy. The important properties required for a high photocatalytic activity, related to the surface characteristics and the phase composition, were determined in terms of the synthesis method. It was concluded that the optimum characteristics were obtained when using the hydrothermal approach, where the TiO2 had two phases, i.e., – anatase and rutile, a Pt-phase in the form of nanoparticles and adsorbed Pt-molecular species, as well as the presence of available free surface hydroxyl groups. Such characteristics had a critical influence on the photocatalytic activity of the final material.  相似文献   

16.
Previous studies suggest that granular interfaces induce a natural and persistent super-hydrophilicity in TiO2-SiO2 composite thin films deposited by sol-gel route. This effect enables to consider self-cleaning applications that do not require a permanent UV exposure, whereas such a permanent exposure is necessary for pure TiO2 films. In this study, TiO2-SiO2 composite thin films have been deposited from a TiO2 anatase crystalline suspension and different SiO2 polymeric sols. Wettability studies show that a suitable control of the TiO2-SiO2 mixed sol formulations noticeably enhances persistence of the natural super-hydrophilicity in composite films. It is shown that, beside granular interface effects, modifications in the composite film morphologies can noticeably influence wettability properties.  相似文献   

17.
Photonic effects amplifying solar energy conversion are reported in titania inverse opals sensitized with quantum‐confined CdSe films. TiO2 inverse opals (i‐TiO2‐o) and unstructured nanocrystalline TiO2 (nc‐TiO2) films are sensitized with CdSe deposited via successive ionic layer adsorption and reaction (SILAR) by generating Se2? in situ under inert atmosphere, and the film absorbance is tuned by the number of SILAR cycles. Photonic effects are investigated while varying the i‐TiO2‐o stop band position relative to CdSe films’ absorbance. i‐TiO2‐o films with stop band at 700 and 560 nm are sensitized with CdSe having absorption edges at 600 and 650 nm thus tuning absorbance to the red and the blue of the stop band. Significant amplification in photon‐to‐current conversion efficiency is measured when CdSe films prepared via two cycles are adsorbed on i‐TiO2‐o with a stop band at 700 nm, with a maximum average enhancement factor equal to 6.7 ± 1.6 at 640 nm, 60 nm to the blue of the stop band center, relative to nc‐TiO2 sensitized with comparable CdSe amounts. The gain is observed over a wide frequency range to the blue of the stop band and is greatest when film absorbance was low. The photocurrent gain is not a result of differences in the rates of charge separation or charge transport, and occurs in the same frequency range where absorbance amplification is measured to the blue of the 700‐i‐TiO2‐o stop band, and is thus attributed to slow light effects enhancing absorbance in the photonic crystal environment.  相似文献   

18.
In this research TiO2 nanocrystals with sizes about 11–70 nm were grown by hydrothermal method. The process was performed in basic autoclaving pH in the range of 8.0–12.0. The synthesized anatase phase TiO2 nanocrystals were then applied in the phtoanode of the dye sensitized solar cells. It was shown that the final average size of the nanocrystals was larger when the growth was carried out in higher autoclaving pHs. The photoanodes made of TiO2 nanocrystals prepared in the pHs of 8.0 and 9.0 represented low amounts of dye adsorption and light scattering. The performance of the corresponding dye sensitized solar cells was also not acceptable. Nevertheless, the energy conversion efficiency was better for the state of pH of 9.0. For the photoanodes made of TiO2 nanocrystals prepared at autoclaving pH of 10.0, the dye adsorption and light scattering were quite higher. The photovoltaic characteristics of the best cell in this state were 15.25 mA/cm2, 740 mV, 0.6 and 6.8% for the short-circuit current density, open-circuit voltage, fill factor and efficiency, respectively. The photoanodes composed of TiO2 nanocrystals prepared in autoclaving pHs of 11.0 and 12.0 demonstrated lower amount of dye adsorption and higher light scattering. This was quite considerable for the state of pH of 12.0. The energy conversion efficiencies were consequently decreased compared to that of the pH of 10.0. The optimum situation was finally discussed based on the nanocrystals size and its influence on the sensitization and light harvesting efficiency.  相似文献   

19.
Poly-o-aminobenzoate (POA) was prepared by oxidizing o-aminobenzoic acid with (NH4)2S2O8 in an acidic solution. POA was adsorbed on TiO2 nanocrystal surface to obtain a POA-TiO2 nanocomposite. The polymerization reaction, structure, adsorption reaction on TiO2 surface, and visible light sensitization effect of the polymer adsorbed on TiO2 surface were studied by FT-IR and UV-visible spectra, cyclic voltammetry, and measurements of visible light photoelectrochemical and photocatalytic activities. Three kinds of POA with different long conjugate structures can be formed. These polymers have large absorbance in wide visible light region. POA molecules can be adsorbed on TiO2 surface by anchoring their carboxylate groups to the TiO2 surface with a multi-bridging chelating mode, which causes formation of the POA-TiO2 nanocomposite with a high stability. POA adsorbed on the TiO2 nanocrystal showed high visible light sensitization effect in the photocatalytic reaction.  相似文献   

20.
《Solid State Ionics》1988,26(2):133-139
Hydrogen chemisorption, magnetic measurements, temperature programmed reduction spectra, and FT-infrared spectra show that samples of nickel supported on TiO2 prepared by incipient wetness are strikingly different from those prepared by ion-exchange. For the incipient wetness samples, the amount of hydrogen chemisorption decreased as the reduction temperature was increased from 300 to 500°C. In addition, the saturation magnetization of the nickel also decreased, indicating a loss of ferromagnetic nickel due to a reaction between the nickel and the TiO2. In contrast, for samples prepared by ion-exchange, there was no reaction between the nickel and TiO2; the hydrogen uptake increased as the reduction temperature was increased to 500°C and no loss of ferromagnetic nickel was detected. We propose that surface hydroxyl groups are important in the initial steps of the reaction between the nickel and TiO2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号