首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Composite Interfaces》2013,20(2-3):335-349
In this research the adhesion and the resulting interfacial shear strength (IFFS) between the natural fibres flax, hemp and cotton and the polymer matrices polypropylene with coupling agent (MAPP) and polylactide acid (PLA) was surveyed with the single fibre fragmentation test (SFFT). The adhesion between MAPP and the fibres was good enough to produce fragments, whereas the adhesion between PLA and flax was too weak to transmit enough tension for fibre cracks which is clearly visible on SEM-photographs. Comparing the IFFS values of the fibres in MAPP with an equal fibre diameter shows that the IFFS value of flax is highest with 7.09 N/mm2 followed by hemp 6.13 N/mm2. The IFFS of cotton is a lot smaller (0.664 N/mm2). The critical fragmentation or fragmentation length of the bast fibres flax (3.16 mm) and hemp (3.20 mm) in MAPP is smaller than the critical fragmentation length of cotton (5.03 mm). The adhesion between the lignocellulosic fibres and MAPP is much better than between the lignin and pectin free cellulose fibre and MAPP. Possible reasons for this — the surface structure of the cotton fibre and its different chemical composition being made up of only cellulose, hemi-cellulose and wax with no pectin or lignin present — are discussed.  相似文献   

2.
《Composite Interfaces》2013,20(8):671-683
Dicumyl peroxide (DCP) is commonly applied as a cross-linking agent in polymer processing. The main aim of this work was to assess the ability of DCP to improve adhesion between polylactide (PLA) and flax or hemp fibres by their interphase cross-linking. Short fibre-reinforced PLA composites were manufactured due to the importance of short fibres in injection moulding of high-quality biocomposites. Reactive extrusion of the PLA, flax or hemp fibres, and DCP was performed. The flax or hemp fibre content was 10?wt%, while DCP varied with 0.5 and 2.5?wt%. The fibres and PLA were mechanically mixed, extruded, granulated and injection moulded to form samples for testing. The samples were characterized by differential scanning calorimetry (DSC), tensile and impact strength tests, dynamic mechanical analysis and scanning electron microscopy (SEM). It was found that flax and hemp fibres increased the Young’s modulus while these fibres decreased the impact strength. Addition of DCP led to increase in PLA crystallinity at the interface with fibres which led to further decrease in impact strength. For that reason, it was concluded that DCP is an ineffective agent to improve interphase adhesion between PLA and short flax or hemp fibres.  相似文献   

3.
Good efficiency of fibrous filters requires not only single fibre collision efficiency but also single fibre adhesion efficiency. Especially at higher filtration velocities (>0.5 m/s) and for larger particles (>5 μm), particles may not adhere to the fibres after impact but rebound off the fibres. The particle bounce mechanisms on filter fibres are rarely investigated, particularly for biological particles (fungal spores, pollen) which are in the size range where particle bounce is dominant. With a special measuring device working with a modified optical particle counter, single fibre collection efficiencies could be determined for various biological and non-biological particles and fibre materials. The results reveal that the single fibre collection efficiencies for biological and non-biological materials are very similar and increase with increasing Stokes number to a maximum value of about 0.45. Beyond a Stokes number of about 2, the single fibre collection efficiency decreases with increasing Stokes number, indicating particles bouncing off the fibres. A comparison of the experimentally determined collection efficiencies with published theoretical considerations showed insufficient agreement, suggesting that the properties of the particle materials do not significantly affect the adhesion efficiency. Based on the experimental results, a mathematical correlation for the single fibre collection efficiency was derived which allows a more accurate prediction of the collection efficiency of fibrous filters.  相似文献   

4.
《Composite Interfaces》2013,20(7-9):715-731
The mechanical properties of fibre-reinforced polymer composites are largely dependant on the adhesion between the matrix and the fibre. In order to enhance the interaction between flax fibres and unsaturated polyester resins, raw fibres were chemically modified using sodium hydroxide, sodium hydroxide plus acetic anhydride and formic acid-based treatments. The physical properties of the modified fibres were investigated by means of the atomic force microscopy. At first, the morphological analysis of the surfaces shows that after the chemical treatments, the fibres surface appear to be less heterogeneous in topology and smoother. Nonetheless, no significant roughness difference was found between the different treatments. Secondly, adhesion forces measurements were performed between a standard AFM silicon nitride tip and the fibres. The adhesion forces were found to vary according to the chemical treatment. The sodium hydroxide-based treatment was found to increase the adhesion force between the fibre and the AFM tip whereas the lowest adhesion force was found for the formic acid- based treated fibre. These results were attributed to the different hydrophilic character of the modified fibres. Due to the importance of the water layer adsorbed on the fibres, the adhesion forces between the AFM tip and the different samples are found to be mainly dominated by capillary forces in relation with the fibre's surface hydrophilicity.  相似文献   

5.
《Composite Interfaces》2013,20(7-9):807-820
In recent years, natural fibre composites have received considerable attention as a serious contender to replace glass fibres in composite material applications. One of the key aspects in composite materials is the interface between the reinforcing fibres and the matrix and a critical assessment of the interfacial bond is needed for a successful design of the final component. Natural fibres possess many intriguing advantages over man-made fibres such as glass, but they also present serious difficulties, especially in terms of material heterogeneity and more specifically in terms of fibre diameter. In this sense, most of the traditional methods for interfacial characterisation are difficult to apply, since the required data reduction involves the use of stress analysis or fracture mechanics approaches in which the fibre diameter is a critical parameter. In the present study, interfacial characterisation is discussed for flax fibre/polypropylene composites and a sensitivity analysis is presented for the single fibre fragmentation test. The results indicate that traditional stress analysis fails to correctly assess the interface, whilst a statistical based data analysis can overcome the fibre heterogeneity problem.  相似文献   

6.
《Composite Interfaces》2013,20(2-3):111-129
The final properties of composite materials are highly dependent on the residual geometrical parameters (length, diameter, aspect ratio), orientation and distribution of the fibres in the matrix, which in turn are related to the processing conditions. This study analysed the fibre structure variation during the processing of a polypropylene matrix reinforced with cellulose flax pulp for different reinforcement concentrations. The fibre's geometrical parameters, length, diameter and aspect ratio have been measured and their statistical distributions have been assessed for each concentration. Furthermore, the effect of the microstructure variation on the final mechanical properties was analysed. In particular, changes in the interfacial area were evaluated based on the hypothesis that the fibres were cylindrical in shape and considering the average values of the diameters and the lengths calculated using a statistical distribution approach. The fibre interfacial area after the process decreases as the fibre concentration increases and this evaluation explains how the adhesion methods that are used for fibre surface modification fail because of the decrement in the modifier interfacial density. The Halpin–Tsai approach was used to model the experimental data obtained from tensile tests for different composites, so as to confirm the effect of fibre parameters, such as aspect ratio and interfacial area values, in the PP/cellulose blends final properties.  相似文献   

7.
《Composite Interfaces》2013,20(8):529-541
Glycidoxypropyltrimethoxysilane (GPS) and γ-aminopropyltrimethoxysilane (APS) were used to modify the surface chemistry of polyamide fibre. The surface chemistry was characterised using X-ray photoelectron spectroscopy. The silanol functional group was designed to be introduced on the surface of polyamide fibre to increase its chemical activity by N-alkylation of GPS and hydrolysis of APS, and to improve the poor interfacial adhesion between a polyamide 66 fibre and an aqueous polyurethane polymer adhesive. The microbond test was used to measure the interfacial shear strength between the waterborne PU adhesive and the polyamide fibre. It has been found that APS hydrolysis and GPS-alkylated fibre surface can be used to improve the interfacial adhesion of polyamide fibre to PU. The IFSS can be improved by N-alkylation of GPS from 5.0 to 8.4?MPa. After water immersion at 50?°C for 48?h, then drying, the IFSS increased to 8.8?MPa due to the plasticisation of PU in water. Better interfacial adhesion was also observed by the hydrolysis of APS, but not significantly improved by this method due to the relatively weak hydrogen bond at the interface between APS and polyamide fibre.  相似文献   

8.
《Composite Interfaces》2013,20(7-9):753-762
One of the main problems in fabricating natural fibre reinforced polymers is the poor adhesion between intrinsically polar plant fibres and non-polar polymer matrices. We have developed a truly green technique of modifying natural fibre (hemp and sisal) surfaces to improve the interaction between the fibres and polymers by attaching nano-scale bacterial cellulose to the fibre surfaces. These modified natural fibres were then incorporated into the renewable polymers cellulose acetate butyrate (CAB) and poly-L-lactic acid (PLLA). Unidirectional natural fibre reinforced composites were manufactured to investigate the impact of the surface modification on the fibre and interface dominated composite properties. Both the tensile strength parallel as well as perpendicular to the fibres of the composites reinforced by bacterial cellulose modified natural fibres were found to increase significantly, especially in the case of a PLLA matrix. In case of modified sisal reinforced PLLA the parallel strength increases by 44% and the off-axis composite strength by 68%. Scanning electron microscopy observations of the composite fracture surfaces confirm the improved interaction between the fibre and the polymer matrix.  相似文献   

9.
Hot-stage microscopy was used to characterise crystal growth at the interface between sisal fibre bundles and a polylactic acid (PLA) matrix in order to better understand the mechanical properties of sisal fibre–PLA composites. Cooling rates and crystallisation temperatures and times were varied to influence crystalline morphology at the interface. Single sisal fibre bundles were evaluated in their as received state or treated with 6 wt.% caustic soda solution for 48?h at room temperature. A microbond shear test was used to characterise the shear strength of the interface as a function of fibre surface treatment. These tests were performed on sisal fibre bundles carefully embedded in flat films of PLA supported on card mounts. Fibre bundles in a PLA matrix were cooled from 180?°C at rates from 2 to 9?°C/min and then crystallised isothermally. For as received fibre bundles uneven growth of PLA spherulites occurred at all cooling rates and crystallisation temperatures. For caustic soda treated fibres, uneven spherulitic growth was observed at crystallisation temperatures at and above 125?°C. In contrast, transcrystalline growth was observed for samples cooled to 120?°C at cooling rates from 2 to 6?°C/min and then allowed to crystallise. The microbond shear strengths of untreated and caustic soda treated fibre bundles were evaluated using Weibull statistics and the caustic soda treated fibres exhibited higher interfacial shear strengths in comparison to untreated fibres, reflecting the development of a transcrystalline layer at the fibre to matrix interface.  相似文献   

10.
《Composite Interfaces》2013,20(7-9):581-604
To tailor the interaction across composite interfaces especially for the development of green composites, i.e. composites made completely from renewable materials, information about the fibre surfaces is required. We review the current state of the art of methods to determine the surface tension of natural fibres and discuss the advantages and disadvantages of techniques used. Although numerous techniques have been employed to characterise surface tension of natural fibres, it seems that commonly used wetting techniques are very much more affected by the non-ideal character of natural fibres. Inverse Gas Chromatography (IGC) is a much better suited technique to determine the surface energetic properties of natural fibres than wetting techniques. The surface tension of natural reinforcements, determined using IGC, was reported for nanosized bacterial cellulose as well as bamboo, cornhusk, flax, hemp and sisal, covering a wide range of cellulose content. The effect of methods to separate/extract fibres from the plants as well as of a few surface modification procedures on the fibre surface properties is also reviewed. The dispersive part of the natural fibre surface tension γ d S varies from 32 to 61 mJ/m2. The fibre surface tension increases with increasing cellulose content of natural fibres. We also found that a higher basicity (Donor Number, K B to Acceptor Number, K Aratio) was observed for fibres containing more cellulose. This may be reflective of higher crystalline cellulose content in the surfaces of the fibres, as only the ether linkage of the cellulose is labile for hydrogen bonding.  相似文献   

11.
《Composite Interfaces》2013,20(3-4):187-200
This work investigated the adhesion strength τ of the joints of polymer blends with fibres. Blends of polysulfone with LC-polyether and epoxy resin (based on DGEBA) with polysulfone, polyetherimide and poly(arylene ether ketone) were taken as matrices. Steel wire, polyamide (nylon-6) and glass fibres were used as substrates. The adhesion strength was determined by the 'pull-out' technique. It was found that incorporation of LCP into polysulfone and incorporation of thermoplastics into epoxy matrix resulted in non-additive relationships between the adhesion strength and modifier (LCP or thermoplastic) content C. In the case of epoxy-polysulfone, epoxy-polyetherimide and polysulfone-LCP matrices, such τ-C dependencies were described by curves showing a maximum. Optimal (maximal) adhesion strength of the blend/fibre joints was obtained at 10 wt% of polysulfone, 15 wt% of polyetherimide and poly(arylene ether ketone) in epoxy resin and 2–5 wt% of LC-polyether in polysulfone. Possible mechanisms of the interface strength enhancement are discussed.  相似文献   

12.
Fibre swelling during laser drilling of carbon fibre composites   总被引:1,自引:0,他引:1  
Fine holes have been laser-drilled in bundles of carbon fibres, using a pulsed Nd:YAG laser (). Examination of the drilled fibres showed that some were significantly swollen, with diameter increases up to 60%. Scanning electron microscopy (SEM) and Raman spectroscopy have been used to investigate the effects of fibre type on the extent of laser-induced fibre swelling. It has been established that extensive swelling only occurred with low-modulus, poly acrylo-nitrile (PAN)-based fibres. Based on the Raman spectra obtained from both as-received and laser-drilled fibres, the swelling mechanism is attributed to simultaneous structural rearrangement and rapid, heating-induced volatilisation of impurities. A prior heat treatment was found to reduce the laser-induced swelling in low-modulus fibres. A 2D numerical heat flow model has been used to investigate the thermal fields generated during laser drilling of carbon fibres, and this information is correlated with the observed effects and the proposed swelling mechanism.  相似文献   

13.
《Composite Interfaces》2013,20(7-9):763-786
The dielectric properties, such as dielectric constant, volume resistivity and dielectric loss factor, of sisal/coir hybrid fibre reinforced natural rubber composites have been studied as a function of fibre loading, fibre ratio, frequency, chemical modification of fibres and the presence of a bonding agent. The dielectric constant values have been found to be higher for fibre filled systems than pure natural rubber. This has been attributed to the polarization exerted by the incorporation of fibres into the matrix. Dielectric constant values were observed to be decreased with increase in frequency due to the decreased interfacial and orientation polarization at higher frequencies. Whereas dielectric constant increases with fibre loading because of the increment in number of polar groups after the addition of hydrophilic lignocellulosic fibres. The volume resistivity of the composites was found to be decreased with fibre loading and a percolation threshold has been obtained at 15.6% volume of fibres. Fibre treatment, such as alkali, acetylation, benzoylation, peroxide and permanganate, were carried out to improve the adhesion between fibres and matrix. The dielectric constant values were lower for systems consisting of fibres subjected to chemical treatments due to the increased hydrophobicity of fibres. The addition of a two-component dry bonding agent consisting of hexamethylene tetramine and resorcinol, used for the improvement of interfacial adhesion between the matrix and fibres, reduced the dielectric constant of the composites. When the weight percentage of sisal fibre was increased in the total fibre content of the hybrid composites, the dielectric constant was found to increase. The added fibres and different chemical treatments for them increased the dielectric dissipation factor. A dielectric relaxation has been observed at a frequency of 5 MHz.  相似文献   

14.
In the space environment, the precision of fibre optic gyroscopes (FOGs) degrades because of space radiation. Photonic components of FOGs are affected by radiation, especially the polarization-maintaining (PM) fibre coil. In relation to the space radiation environment characteristic, we have carried out a series of radiation experiments on a PM fibre coil with 6OCo radiation source at different dose rates. Bazed on the experimental results, the formula between the PM-fibre loss and radiation dose rate is built, and the relation between the precision of FOG and radiation dose is obtained accordingly. The results strongly show that the precision of our FOG degrades owing to the attenuation of the polarization-maintaining fibre, which provides theoretical foundation for the radiation-resistant design of the FOG.  相似文献   

15.
A method is suggested to determine both the refractive index and the transverse sectional shape and area of fibres, having skin–core structure, at the same time for the same region of the fibre. The method depends on using a fibre rotator device attached with Pluta polarizing interference microscope, to record the variation of the fibre thickness at each angle of rotation. Nylon 6 fibres having skin–core structure were used in this study. Beck-line method was used to determine the refractive index of the skin for light vibrating parallel and perpendicular to the fibre axis. To confirm the results of the suggested method, the optical microscope was used to determine the transverse sectional shapes of bundles of nylon 6 fibres. The mean refractive indices of the skin and core of nylon 6 fibres were determined. Microinterferograms are given for illustration.  相似文献   

16.
The transmission of optical multimode carriers via clad glass fibres has many advantages, but in general introduces severe signal distortion because of mode delay differences. We describe a simple semiconductor receiver capable of equalizing these delay differences at the fibre end. A tenfold increase in bandwidth (data rate) should be possible by this means if mode coupling in the fibre is not excessive.  相似文献   

17.
研究了聚丙烯(PP)及含有受阻酚类抗氧剂和受阻胺类光稳定剂复合体系的PP复合物经过γ-射线辐照后发生的结构变化及抗老化剂所起作用。实验利用红外光谱(FTIR)和示差扫描量热法(DSC)对PP的结构变化进行了系统表征。研究结果表明,当辐照剂量较小(50 kGy)时,纯PP及其复合物体系均未发生明显降解;当辐照剂量较大(≥50 kGy)时,PP及其复合物的羰基指数迅速提高,二者的结晶温度和熔融温度大幅度降低,说明PP发生了严重降解。在相同γ-射线辐照剂量条件下(≥50 kGy),PP复合物的羰基指数高于纯PP,而结晶温度以及熔融温度低于纯PP,表明高辐照剂量下抗老化剂复合物的存在不但没有阻止聚丙烯的降解,反而加快了降解的速率。  相似文献   

18.
借助ICP-MS/ICP-AES技术对转基因棉花和对照纤维中的微量元素和重金属进行了系统的研究。转基因棉花纤维中,所测量的15种微量元素中有十种元素含量低于非转基因对照,它们分别是:B,Mg,Mn,Fe,Co,Ni,Cu,Zn,Se和Mo,特别是Zn成倍降低; 而植物中的大量元素Na,Si,P,K和Ca则有所上升,以Si上升最多(2倍多)。在检测的六种重金属(Pb,Cr,Cd,Sb,Tl和As)中转基因抗虫棉花纤维含量都低于亲本对照。上述结果说明外源基因的导入能够显著改变转基因棉花纤维中微量元素和重金属的累积。  相似文献   

19.
Orientational Distribution of Fibres in Sheared Fibre Suspensions   总被引:1,自引:0,他引:1       下载免费PDF全文
Motion of fibres in sheared fibre suspensions is simulated numerically by using the lattice Boltzmann method. The orientational distributions of the fibres are presented for different Reynolds numbers, Stokes numbers, shear rate and fibre aspect ratio. Some computational results are compared with the experimental data of pipe flow, and the qualitative agreement is achieved. The results show that the orientational distributions are greatly affected by the Reynolds numbers, while relatively insensitive to the fibre aspect ratio. The Stokes number and shear rate have obvious influence on the orientation distribution.  相似文献   

20.
The condition of the single fundamental mode (HE11) transmission in hollow core Bragg fibres is investigated theoretically by the transfer matrix method. The influences of core size and cladding parameters on the single HE11 mode bandwidth are analysed, showing that the maximal bandwidth is more sensitive to the core size than the cladding. The numerical results show that sufficiently broad bandwidth of single HE11 mode transmission can be achieved by proper fibre design. A simple and fast method based on improved hollow metal waveguide model is proposed to optimize fibre structure parameters for the maximal single HE11 mode bandwidth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号