首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
《Composite Interfaces》2013,20(2):87-116
Carbon fibers coated with various types and amounts of very high molecular weight silicones (780000 g/mol) are used to make unidirectional PMR-15 polyimide composites. Coating conditions have been found to affect the fiber arrangement within the interlayered composites which consequently has a strong effect on composite properties. The effect of variation of the type and the amounts of the silicone on the impact resistance, toughness and mechanical properties of the composite is determined. Retention of properties of the thermally aged composites has also been studied. Finally, the interlayered composites are checked for improvement of microcracking resistance.  相似文献   

2.
A new method to tune the peak loss of mechanically formed long-period fiber gratings (MLPFGs) is proposed. Periodic arrayed metal wires are used to obtain the gratings along a single mode fiber (SMF). Self-maintaining gratings are achieved by the bonding force of an UV-adhesive between two glass plates. The initial index modulation formed at room temperature creates a maximum attenuation of −9 dB and −12 dB for coated and uncoated SMF, respectively. By changing the temperature, the peak loss is tuned due to the large thermal expansion of the UV-adhesive. Thermally tunable characteristics caused by the coating layer of the SMF are also described and compared with the results of the device with an uncoated SMF.  相似文献   

3.
Polyacrylonitrile (PAN)-based carbon fabric (CF) was modified with strong HNO3 oxidation and then introduced into polyimide (PI) composites. The friction and wear properties of the carbon fabric reinforced polyimide composites (CFRP), sliding against GCr15 stainless steel rings, were investigated on an M-2000 model ring-on-block test rig under dry sliding. Experimental results revealed that the carbon fiber surface treatment largely reduced the friction and wear of the CFRP. Compared with the untreated ones, the surface-modified CF can enhance the tribological properties of CFRP efficiently due to the improved adhesion between the CF and the PI matrix. Scanning electron microscope (SEM) and X-ray photoelectron spectroscopy (XPS) study of the carbon fiber surface showed that the fiber surface became rougher and the oxygen concentration increased greatly after surface treatment, which improved the adhesion between the fiber and the PI matrix and improved the friction-reduction and anti-wear properties of the CFRP. An erratum to this article can be found at  相似文献   

4.
Bing Xu  Yun Lu 《Applied Surface Science》2006,253(5):2695-2701
In this work, sized polyacrylonitrile (PAN)-based carbon fibers were chemically modified with nitric acid and maleic anhydride (MA) in order to improve the interaction between carbon fiber surface and polyimide matrix. Bismaleimide (BMI) was selected as a model compound of polyimide to react with modified carbon fiber. The surface characteristic changing after modification and surface reaction was investigated by element analysis (EA), scanning electron microscopy (SEM), atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS) and surface enhanced Raman scattering (SERS). The results indicated that the modification of carbon fiber surface with MA might follow the Diels Alder reaction mechanism. In the surface reaction between modified fibers and BMI, among the various surface functional groups, the hydroxyl group provided from phenolic hydroxyl group and bridged structure on carbon fiber may be the most effective group reacted with imide structure. The results may shed some light on the design of the appropriate surface structure, which could react with polyimide, and the manufacture of the carbon fiber-reinforced polyimide matrix composites.  相似文献   

5.
《Composite Interfaces》2013,20(6):477-507
Mold fill velocities of 0.067 cm3/s and 2.66 cm3/s were used to impregnate glass fiber preforms with different architectures and sizing types in two force-controlled resin transfer molding (RTM) fixtures. The fabrication of disk-shaped parts at high molding speed and high post-cure fill pressure was proven successful in reducing the amount of flow-induced defects for reinforcements with a random nonlayered structure. Investigations on the effect of fiber/matrix interface modification with controlled-thickness elastomeric films obtained by the admicellar polymerization technique were carried out to assess the structural integrity levels attained with these less expensive polymeric sizings. In particular, parts reinforced with fibers coated with a thin film of styrene-isoprene copolymer performed significantly better than the uncoated control samples in the tensile and flexural tests. For the same sizing type, the interlaminar shear strength was more than 30% higher than the desized composite and compared statistically to the adhesion level exhibited by commercially sized reinforcements. Greater data scatter and poorer adhesion performance was observed for those composites containing fibers with a thin polystyrene coat. We infer that beneficial effects of a nanometer-thick elastomer interlayer are more evident when extensive cooperative segmental motions take place, that is, when the surface glass transition temperature of the sizing is far below the room temperature. These results have implications for composite manufacture applications involving tailored interfaces with flexible sizings.  相似文献   

6.
Single crystal ruby fibers, cooled with liquid nitrogen, have been operated as end pumped lasers. The fiber laser is a guided wave device with a length of 15 mm and a mean diameter of 60 μm. The laser resonator structure is monolithic, consisting of an aluminium mirror coated on one fiber end face and an uncoated opposite end face serving as an output coupler. Using an argon ion laser pump source, cw output powers of several mW were obtained.  相似文献   

7.
The purpose of this study is to increase the interfacial properties in PMMA/carbon fiber (PMMA/CF) composites Graphene oxide (GO) and brached polyethyleneimine were coated onto the surface of carbon fiber by layer-by-layer assembly in this work. Compared with the origin PMMA/CF composite, the composites reinforced by PMMA/CF–GO showed significant enhancement in interFacial shear strength (IFSS). The improved fiber–matrix adhesion was proved by fracture morphology observation of scanning electron microscopy and almost unaffected mechanical properties of the fiber itself during the coating process. The optimal assembly time was found to be 10 for enhancing the overall composite mechanical performance.  相似文献   

8.
《Composite Interfaces》2013,20(2-3):215-229
The dynamic mechanical thermal properties of carbon fiber-reinforced bismaleimide (BMI) composites processed using polyacrylonitrile(PAN)-based carbon fibers unsized and sized with LaRC PETI-5 amic acid oligomer as interphase material at 150°C, 250°C, and 350°C were investigated by means of dynamic mechanical thermal analysis. It was found that the storage modulus, loss modulus, tan δ and the peak temperature significantly depend on the sizing temperature as well as on the presence and absence of LaRC PETI-5 sizing interphase. The result showed that the carbon fiber/BMI composite sized at 150°C had the highest storage modulus at a measuring temperature of 250°C. The storage modulus decreased with increasing sizing temperature from 150°C to 350°C, being influenced by interdiffusion and co-reaction between the LaRC PETI-5 interphase and the BMI matrix resin. The present result is quite consistent with the interfacial result reported earlier in term of interfacial shear strength and interlaminar shear strength of carbon fiber/BMI composites. It is addressed that in the present composite system the sizing temperature of LaRC PETI-5 interphase critically influences not only the interfacial properties but also the dynamic mechanical thermal properties and its control is also important.  相似文献   

9.
程君妮 《物理学报》2018,67(2):24212-024212
介绍了一种简单且灵敏度较高的Mach-Zehnder干涉湿度传感器.将单模光纤和多模光纤渐变熔接光纤锥,色散补偿光纤被熔接在两个多模渐变光纤之间,形成了单模光纤-光纤锥-多模渐变光纤-色散补偿光纤-多模渐变光纤-光纤锥-单模光纤结构的传感器.光纤锥起到了增加包层模能量的作用,两个多模渐变光纤节点作为光耦合器,从而形成光纤Mach-Zehnder干涉仪.外界环境湿度的变化,将使得传感器透射谱能量发生变化,通过测量干涉谱波峰峰值能量实现对湿度的测量.实验结果表明干涉谱波峰峰值能量与环境湿度之间存在良好的线性关系.当环境湿度在35%RH—85%RH范围内变化,一段由20 mm色散补偿光纤组成的传感器,其灵敏度为-0.0668 dB/%RH,相关度为0.995.该传感器结构紧凑、尺寸小、制造工艺简单,这使其可以被广泛用于湿度测量.  相似文献   

10.
《Composite Interfaces》2013,20(5):515-526
Rare earth solution (RES) surface modification and air-oxidation methods were used to improve the interfacial adhesion of the carbon fiber reinforced polyimide (CF/PI) composite. The flexural property of the PI composites reinforced by the carbon fibers treated with different surface modification methods was comparatively investigated. Results showed that the flexural strength of CF/PI composite was improved after RES treatment. The improvement of impact and flexural property of the CF/PI composite was mainly due to the improvement in interfacial adhesion after RES treatment. X-ray photoelectron spectroscopy (XPS) study of carbon fiber surface showed that the oxygen concentration was obviously increased after RES treatment. The increase in the amount of organic functional groups increased the interfacial adhesion between CF and PI matrix.  相似文献   

11.
《Composite Interfaces》2013,20(3-4):259-269
The dimensional changes of two-dimensional phenolic resin-based carbon/carbon composites during pyrolysis were investigated. The carbon/carbon composites were obtained by pyrolyzing the carbon fiber/phenolic resin composites that were fabricated using a vacuum bag hot pressing technique. Length, width and thickness of the rectangular composite samples were measured carefully before and after pyrolysis. The effects of heat treatment temperature and fiber pre-heat treatment on the dimensional changes of carbon/carbon composites were investigated. The measurement results indicated that different behavior in dimensional changes could be obtained for carbon/carbon composites with different fiber–matrix bonding in the interface.  相似文献   

12.
Functionalized multiwalled carbon nanotubes were successfully deposited on carbon fibers using four different techniques including dip coating, hand layup, spray up and electrophoretic deposition (EPD). A uniform coating of nanotubes was achieved from EPD in comparison to other coating techniques. Later nanotube-coated fibers by EPD were introduced in epoxy resin to investigate interfacial mechanical properties of the developed hierarchical composites by vacuum bagging technique. The increases in flexural and interlaminar shear properties up to 15% and 18% were observed in composites containing nanotube-coated carbon fibers than composites with virgin carbon fibers, respectively. Microscopic observation revealed the proper impregnation of multiscale reinforcements, i.e., carbon fibers and carbon nanotubes, in resin along with the modification of fiber/matrix interface due to the presence of nanotubes at interface. Finally, the mechanisms for improved mechanical properties were identified along with the presentation of a schematic model for better understanding of the improved performance of hierarchical composite after depositing uniformly dispersed nanotubes on carbon fibers.  相似文献   

13.
章勇  唐丽  陈哲  余健辉  钟永春 《应用光学》2016,37(4):633-638
为了实现在侧边抛磨光纤(SPF)上制作布拉格光栅结构并提高器件设计灵活性,利用重铬酸盐明胶(DCG)作为光刻材料,提出一种新型的光纤表面布拉格光栅制作方法并对该器件温度传感特性进行研究。使用轮式抛磨系统制作SPF,并在SPF侧抛面上旋涂DCG,通过干涉光束曝光显影制作表面布拉格光栅。光谱测量表明:带有布拉格光栅的侧边抛磨光纤在1 480.2 nm处有透射谷,在相应位置反射谱有明显反射峰,其调制幅度达到15.9 dB,这是由于表面光栅的布拉格反射所致。温度传感实验表明,该布拉格反射峰的温度灵敏度为17.84 pm/℃。这种器件已在光纤传感和光纤滤波器等方面获得应用。  相似文献   

14.
《Composite Interfaces》2013,20(4):275-289
This work was undertaken in order to increase the understanding of the mechanism responsible for fiber/matrix interaction in carbon fiber/thermoplastic composite. From results of previous study on carbon fiber/PEEK composite, which suggested that the formation of the fiber/ matrix interaction was primarily related to a chemisorption mechanism, a study was done of the conditions required to obtain efficient fiber/matrix interaction in PA-12 and PP/carbon fiber composites. The interest in studying carbon fiber composite based on PP and PA-12 was that these two matrices are very different in terms of reactivity, polyamide having many more reactive groups than polypropylene. As expected, due to the non-reactive chemical structure of the polypropylene, fiber/matrix interaction in carbon fiber/PP composite occurred only when the matrix was thermally degraded, i.e. when the composite was molded at high temperature or under long residence time at the melt temperature. For the carbon fiber/PA-12 composite, strong fiber/matrix interaction occurred readily at relatively low molding temperature, i.e. well before thermal degradation of the matrix. It was also found that the short beam shear strength in these composites seems to evolve with molding temperature, and a maximum interfacial strength was observed at a molding temperature corresponding to the thermal degradation of the matrix. This indicates that although matrix degradation often results in strong reduction in the composite performance, some matrix degradation can be beneficial in terms of interfacial mechanical properties. Finally, this work demonstrated that while the formation of fiber/matrix interaction seems to be primarily related to a chemisorption mechanism, the contribution of interphase crystallinity to the interfacial strength is not negligible. In fact, interfacial crystallinity was found to be essential to ensure optimum interfacial strength.  相似文献   

15.
Poly(3-hydroxybutyrate-co-4-hydroxybutyrate) [P(3HB-co-4HB)] composites filled with clay were prepared by a melt blending process. Dynamic rheology of the composites was measured by means of a rotational rheometer. The results showed that the interlayer spacing of the clay increased owing to the presence of the P(3HB-co-4HB) melt in the interlayer regions of the clay. The storage and the loss moduli of the composite samples increased with the increasing frequency, and decreased with the increasing temperature. The addition of the clay enhanced the oscillatory thinning behavior of the composite melts, and improved the processability of the P(3HB-co-4HB) melt. The decrease of the viscosity by increasing both frequency and temperature was feasible and effective for the composites with the clay contents of 1 and 2 wt.%.  相似文献   

16.
《Composite Interfaces》2013,20(5-6):443-458
The mechanism with which the fiber-matrix interfacial strength exerts its influence on the compressive strength of fiber reinforced composites has been studied by measuring the axial compressive strength of carbon fiber/epoxy resin unidirectional composite strands having different levels of interfacial shear strength. The composite strands are used for experiments in order to investigate the compressive strength which is not affected by the delamination taking place at a weak interlayer of the laminated composites. The interfacial strength is varied by applying various degrees of liquid-phase surface treatment to the fibers. The efficiency of the compressive strength of the fibers utilized in the strength of the composite strands is estimated by measuring the compressive strength of the single carbon filaments with a micro-compression test. The compressive strength of the composite strands does not increase monotonically with increasing interfacial shear strength but showes lower values at higher interfacial shear strengths. With increasing interfacial shear strength, the suppression of the interfacial failure in the misaligned fiber region increases the compressive strength, while at higher interfacial shear strengths, the enhancement of the crack sensitivity decreases the compressive strength.  相似文献   

17.
Abstract

The polyoxymethylene (POM)/basalt fiber composites were prepared by use of long fiber-reinforced thermoplastic technology through melt pultrusion. The mechanical and tribological properties, morphology, and thermal stability of the resulting composites were investigated. The composites exhibit significant improvements in tensile, flexural, and notched impact strength. These mechanical strength and toughness are dependent on the fiber content over the full range of the study. The residual fiber length and distribution in the injection-molded specimens were characterized. The prominent reinforcement effect of basalt fiber on POM is derived from the supercritical fiber length, which is much longer than that of the short fiber-reinforced ones and thus makes the composites take full advantage of the strength of the reinforcing fibers. The Kelly–Tyson model was used to predict the ultimate tensile strength of POM composites using the measured values of residual fiber length in the matrix, but the deviations were observed at the high contents of basalt fiber. The morphologic investigation indicates that the fiber pullout and fiber breakage both contribute energy dissipation to the tensile fracture of the composites. The tribological characterization indicates that the friction coefficients and specific wear rates of POM composites also decrease remarkably. Such an improvement of tribological performance is due to the presence of the high wear-resistant basalt fibers on the top of the worn surface bearing the dynamic loadings under sliding. Moreover, the dynamic mechanical analysis reveals that the storage moduli of the composites increase with increasing the fiber content, whereas the loss factors present an opposite trend.  相似文献   

18.
In this paper, carbon fibers with improved thermal stability and oxidation resistive properties were prepared and evaluated their physical performances under oxidation condition. Carbon fibers were coated with SiC particles dispersed in a polyacrylonitrile solution and then followed by pyrolyzed at 1400 °C to obtain the SiC nanoparticle deposition on the surface of the carbon fiber. The SiC coated carbon fiber showed extended oxidation resistive property as remaining 80-88% of the original weight even at high temperature 1000 °C under air, as compared with the control of zero weight at 600 °C. The effects of the coating conditions on the oxidation resistive properties of the coated fibers were studied in detail.  相似文献   

19.
树脂基复合材料在连续激光作用下的损伤   总被引:9,自引:5,他引:9       下载免费PDF全文
 采用热压工艺制备了碳纤维布和高硅氧纤维布增强的环氧树脂和酚醛树脂基复合材料,研究了不同功率密度连续激光辐照下,复合材料的破坏形式及其组织结构与力学性能的变化。结果表明:当激光辐照功率密度大于0.1 kW/cm2后,树脂基体产生燃烧,碳纤维没有明显的损伤,而玻璃纤维布开始熔融,复合材料的拉伸性能降低30%~40%;当功率密度达到1 kW/cm2以后,除基体燃烧外,碳纤维复合材料产生明显的鼓泡分层,表层碳纤维有少量破断,而高硅氧纤维产生明显的熔融烧损,复合材料的拉伸性能降低80%以上。采用有限元计算方法,对碳纤维增强环氧树脂复合材料在连续激光辐照下的温度场进行了研究,计算结果与实验中复合材料的损伤行为相吻合。  相似文献   

20.
The compatibility of solid blends: PS/SBR, PS/SBR filled with glass fiber and PS/SBR filled with talc were studied using ultrasonic pulse echo technique. Measurements were carried out at room temperature (298 K) and a frequency of 3 MHz. The ultrasonic velocity for the compressional wave and that for shear wave have been measured to obtain the elastic moduli data by knowing of density. The variation of ultrasonic wave velocities and elastic moduli with weight percent of the blend was found to be linear in PS/SBR blend, indicating some degree of compatibility but the drawback of elastic moduli indicate incompatibility of the system blend, while it deviates from linearity in blends of PS/SBR filled with glass fiber and talc but the increase in elastic moduli indicates that there is an increase in degree of compatibility between PS and SBR due to adding of glass fiber or talc. The ultrasonic absorptions for longitudinal wave in the temperature range from 298 to 423 K in the studied system were measured using ultrasonic pulse echo technique. Typical results showing the temperature dependence of the ultrasonic absorption at frequencies of 1, 2, 3 and 5 MHz are illustrated for all samples of the different compositions. The study of compositional and temperature dependence of the ultrasonic absorption in the present studied blends reveals the same behavior of the compatibility degree of the blends. Density data of the blends confirmed the ultrasonic results. Also the correlation between hardness and elastic moduli for the present blend systems has been studied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号