共查询到20条相似文献,搜索用时 15 毫秒
1.
《Composite Interfaces》2013,20(8-9):643-656
Ternary hybrid nanocomposites of polyimide (PI), poly(vinylsilsesquioxane) (PVSSQ), and titania (PI/PVSSQ/Ti) were prepared by thermal imidization from 3,3',4,4'-biphenyltetracarboxylic dianhydride (BPDA)-4,4'-oxydianiline (ODA) polyamic acid (BPDA–ODA PAA) and a sol-gel process from vinyltriethoxysilane(VSSQ) and titanium isopropoxide(Ti(OPr)4). The microstructure, interfacial interaction, and optical and thermo-mechanical properties of the hybrid films have been investigated. The phase morphology and the properties are influenced by the composition of PVSSQ and titania. For the PI/VSSQ/titania ternary hybrid systems, the particle size is significantly decreased and the inorganic particles are extremely finely distributed in the nanometer scale, suggesting that the interaction between the particles and the matrix increases. It is concluded that the addition of titania plays a compatibilizing role for the PI/PVSSQ binary hybrids, resulting in the enhancement of optical transparencies and thermo-mechanical properties of the binary hybrids. 相似文献
2.
《Composite Interfaces》2013,20(8-9):687-699
High-pressure low-density polyethylene (HLDPE)/organic functionalized SiO2 nanocomposites were synthesized using melt-blending technique in a sigma internal mixer. The properties of the nanocomposites were studied using two different organic functional modifiers: diglycidyl ether of bisphenol-A (DGEBA) and triacetoxyvinylsilane. Reinforcing, thermal stability and toughening effects of organic functionalized nanosilica on the polymer matrix were found at loading of 2.5% nanosilica functionalized with 2.8% of DGEBA and silane coupling agent respectively. Organic functionalization on the nanosilica particle surface led to different microstructures when compared with that of the pure polymer. Organic functionalization on the nanosilica particle surface produced good interfacial adhesion and homogeneous dispersion in the polymer matrix, while the use of nanosilica resulted in aggregated silica particles in the polymer matrix. There was no significant improvement in thermal stability and mechanical properties when only nanosilica was added to the pure polymer. On the contrary, the addition of pretreated nanosilica with organic functional modifiers led to an increase of thermal stability from 313–363°C, elastic modulus and toughness from 0.12–0.18 GPa and 3.23–9.81 MJ/m3 respectively. 相似文献
3.
通过卟啉配合物Meso-四(4-羧基苯基)卟啉铜(简称Cu(Ⅱ)-TCPP)中的羧基与γ-氨基丙基三乙氧基硅烷(NH2(CH2)3Si(OC2H5)3,KH550)中的氨基的相互化学作用,成功地把卟啉配合物接枝到KH550中,随着KH550中乙氧基的水解与聚合反应的进行,卟啉铜连接到固体介质中,从而大幅度提高了卟啉在无机固体介质中的掺杂浓度. 将反应产物与γ-(2,3-环氧丙氧基)丙基三甲氧基硅烷(CH2CHCH2O(CH2)3Si(OCH3)3,KH560) 相杂化,形成物化性能良好、连接卟啉的有机-无机复合材料. 用红外光谱表征了Cu(Ⅱ)-TCPP与KH550的化学反应产物,用紫外—可见吸收光谱研究Cu(Ⅱ)-TCPP的分子状态. 应用Z扫描技术研究不同Cu(Ⅱ)-TCPP掺杂浓度的复合材料的非线性光学性质,其三介非线性折射率n2达-1.1161×10-16 m2/W.
关键词:
非线性折射率
有机-无机复合材料
接枝
Meso-四(4-羧基苯基)卟啉铜 相似文献
4.
用射频磁控溅射方法制备了系列Co/SiO2不连续磁性金属绝缘体多层膜(DMIM) .经研究发现:对[SiO2(2.4 nm)/Co(t)]20体系,在Co层厚度小于2.5 nm时,Co层由连续变为不连续;Co层不连续时,其导电机理为热激发的电子隧穿导电,lnR与T-1/2接近正比关系; 隧道磁电阻(TMR)在Co层厚度为1.4 nm时出现极大值-3%.DMIM 的性质 不仅与磁性金属层厚度密切相关,而且与绝缘层厚度有密切的关系.在固定Co层厚度为 1.9 nm的情况下,研究了TMR随SiO2层厚度的变化
关键词:
不连续磁性金属/绝缘体多层膜
隧道磁电阻效应 相似文献
5.
Fluorinated organic-inorganic hybrid films were prepared by free-radical random copolymerization and sol-gel process through dodecafluoroheptyl methacrylate (DFMA), vinyltriethoxysilane (VTES), and tetramethoxysilane (TMOS). It was found that the prepared fluorinated organic-inorganic hybrid film was very hydrophobic and exhibits excellent water repellency. Hydrophobic fluorocarbon side chains were preferentially enriched to the outermost layer at the interface of coating film-air, and three layers probably exist in the coating films. The fluorinated hybrid films possessed fluorocarbon side chains orient toward the air originating from DFMA as the top layer, hydrocarbon backbone chain originating from vinyl polymerization as the middle layer, and silica network originating from the hydrolysis and condensation of siloxane as the bottom layer. It demonstrated that most of TMOS added might be arranged to the bottom layer of the fluorinated hybrid films, and had a slight impact on the enrichment of fluorocarbon side chains of the outermost layer. However, the useful properties of the fluorinated organic-inorganic hybrid films such as thickness and corrosion resistant can be significantly improved by the increase of TMOS content. 相似文献
6.
《Composite Interfaces》2013,20(7-9):763-786
The dielectric properties, such as dielectric constant, volume resistivity and dielectric loss factor, of sisal/coir hybrid fibre reinforced natural rubber composites have been studied as a function of fibre loading, fibre ratio, frequency, chemical modification of fibres and the presence of a bonding agent. The dielectric constant values have been found to be higher for fibre filled systems than pure natural rubber. This has been attributed to the polarization exerted by the incorporation of fibres into the matrix. Dielectric constant values were observed to be decreased with increase in frequency due to the decreased interfacial and orientation polarization at higher frequencies. Whereas dielectric constant increases with fibre loading because of the increment in number of polar groups after the addition of hydrophilic lignocellulosic fibres. The volume resistivity of the composites was found to be decreased with fibre loading and a percolation threshold has been obtained at 15.6% volume of fibres. Fibre treatment, such as alkali, acetylation, benzoylation, peroxide and permanganate, were carried out to improve the adhesion between fibres and matrix. The dielectric constant values were lower for systems consisting of fibres subjected to chemical treatments due to the increased hydrophobicity of fibres. The addition of a two-component dry bonding agent consisting of hexamethylene tetramine and resorcinol, used for the improvement of interfacial adhesion between the matrix and fibres, reduced the dielectric constant of the composites. When the weight percentage of sisal fibre was increased in the total fibre content of the hybrid composites, the dielectric constant was found to increase. The added fibres and different chemical treatments for them increased the dielectric dissipation factor. A dielectric relaxation has been observed at a frequency of 5 MHz. 相似文献
7.
The properties of porous SiO2 xerogel film strongly depend on the aging process. The morphology of the surface modified SiO2 xerogel film pre-aged for 1 hr at 70°C showed a two-dimensional structure. Aging for 12 h at 70°C and successive modification of the film induced some particle growth and a three-dimensional network structure. The microstructure of the modified SiO2 xerogel films reflects the preformed structure during aging. The surface modification induced the changes of surface coverage from –OC2H5 and –OH bonds to –CH3. However the content of surface chemical species was almost same regardless of aging time. The porosity of the modified sample pre-aged for 12 h at 70°C was 89%. The calculated/measured dielectric constants were 1.31/1.42, respectively 相似文献
8.
锗/多孔硅和锗/氧化硅薄膜光致发光的比较研究 总被引:2,自引:0,他引:2
采用磁控溅射技术,以锗为溅射靶,在多孔硅上沉积锗薄膜,沉积时间分别为4,8和12 min,及以锗-二氧化硅复合靶为溅射靶,在n型硅衬底上沉积了含纳米锗颗粒的氧化硅薄膜,锗与总靶的面积比分别为5%,15%,30%.各样品在氮气氛中分别经过300,600及900℃退火30 min.对锗/多孔硅和锗/氧化硅薄膜进行了光致发光谱的对比研究,用红外吸收谱分析了锗/多孔硅的薄膜结构.实验结果显示,锗/多孔硅薄膜的发光峰位于517 nm附近,沉积时间对发光峰的强度有显著影响,锗层越厚峰强越弱.锗/氧化硅薄膜的发光峰位于580 nm附近,锗与总靶的面积比对发光峰的强度影响较大,锗/氧化硅薄膜中的锗含量越高峰强越弱.不同的退火温度对样品的发光峰强及峰位均没有明显影响.可以认为锗/多孔硅的发光峰是由多孔硅与孔间隙中的锗纳米晶粒两者界面的锗相关缺陷引起的,而锗/氧化硅的发光峰来自于二氧化硅的发光中心. 相似文献
9.
PdCl_2/SiO_2和Pd-B/SiO_2非晶态合金催化剂的Raman光谱表征 总被引:1,自引:0,他引:1
采用共焦显微Raman光谱和X-射线衍射方法表征了负载型PdCl2/SiO2和Pd-B/SiO2非晶态合金催化剂的结构。结果表明PdCl2分散在SiO2载体上后,与载体表面的相互作用使其在室温时即发生β→α构型转变。Pd-B/SiO2非晶态合金的Raman光谱在300-500cm-1区域内呈现一大的弥散峰。与无负载Pd-B非晶态合金比较初步认定该弥散峰与Pd-B键振动有关,温度升高Pd-B/SiO2催化活性下降,其主要原因为Pd-B/SiO2非晶态合金在高温下逐渐晶化为Pd金属所致。PdCl2与SiO2载体表面的相互作用使其具有较高的分散性,由此还原制备的Pd-B/SiO2非晶态合金较之无负载Pd-B非晶态合金更加微细化,因而具有更大的活性比表面 相似文献
10.
Si/SiNx/SiO2多层膜的光致发光 总被引:1,自引:0,他引:1
采用射频磁控溅射法,制备了具有强光致可见发光的纳米Si/SiNx/SiO2多层膜,利用傅立叶红外吸收(FTIR)谱,光致发光(PL)谱对其进行了研究。用260nm光激发得到的PL谱中观察到高强度的392nm(3.2eV)和670nm(1.9eV)光致发光峰,分析认为它们分别来自于缺陷态≡Si-到价带顶和从导带底到缺陷态≡Si-的辐射跃迁而产生的光致激发辐射复合发光。PL谱中只有370nm(3.4eV)处发光峰的峰位会受退火温度的影响,结合FTIR谱认为370nm发光与低价氧化物—SiOx(x<2.0)结合体有密不可分的关系。当SiO2层的厚度增大时,发光强度有所增强,800℃退火后出现最强发光,认为具有较大SiO2层厚度的Si/SiNx/SiO2结构多层膜更有利于退火后形成Si—N网络,能够得到更高效的光致发光。用量子限制-发光中心(QCLC)模型解释了可能的发光机制,并建立了发光的能隙态(EGS)模型。 相似文献
11.
《Composite Interfaces》2013,20(5-6):427-438
Biodegradable aliphatic polyester (APES)/thermoplastic starch (TPS)/Cloisite 30B ternary hybrid nanocomposites were prepared via melt intercalation. The dispersion of the silicate layers in the APES/TPS hybrids were characterized by using X-ray diffraction and transmission electron microscopy. Tensile and barrier properties of the APES/TPS/Cloisite 30B hybrids were also studied. Adding APES to the TPS/Cloisite 30B hybrids leads to higher tensile strength and improved barrier property. 相似文献
12.
以氯化醇钛盐表面反应法制备系列TiO2/SiO2,根据XRD,Raman和DRS表征分析,载体表面具有分子级分散的锐钛矿型TiO2微晶粒子和非晶TiOx物种.与本体TiO2相比,TiO2/SiO2的吸收带边显著蓝移,能隙增大为3.96 eV.当金属M(M:Pd,Cu和Ni)负载于TiO2/SiO2表面,可使其光吸收域扩展到可见光区,并引起吸收带边红移.相对Pd的负载,Cu,Ni的负载对TiO2/SiO2的LMCT带影响更大,其中Cu-TiO2/SiO2的能隙减小为3.68 eV.当金属氧化物MoO3负载于TiO2/SiO2上时,可以调变TiO2/SiO2的吸收带边并增强对可见光的吸收;随MoO3载量的增加,表面物种的相互作用增强,形成Mo-O-Ti复合结构,增强了LMCT带的吸收强度,并使能隙减小为3.81 eV. 相似文献
13.
Frédéric Guinneton Laurent Sauques Frédéric Cros 《Journal of Physics and Chemistry of Solids》2005,66(1):63-73
Thermochromic vanadium dioxide VO2 exhibits a semi-conducting to metallic phase transition at Tc=68 °C, involving strong variations in optical transmittance, reflectance and emissivity. However, the optical contrasts observed in thin films or nanostructured compacted samples seem to depend on both surface microstructure and surface crystal texture. In the case of opaque materials, surface defects might play a drastic role in optical reflectivity. As the high temperature metallic phase of VO2 is opaque for infrared radiations, we used aluminum samples as standards allowing us to correlate reflectivity responses with porosity and surface defects. Then, various polycrystalline and nanostructured VO2 samples compacted at various pressures and presenting variable surface roughness were prepared. Thin films were deposited by radio frequency sputtering process. The samples were characterized using X-ray diffraction, scanning electron microscopy and transmission electron microscopy. Optical properties (reflectance and emissivity) were analyzed above and below the transition temperature, making use of specific FTIR equipments. In thin films, the deposited VO2 phase was systematically oriented and surface porosity was very weak. In polycrystalline samples, as the compaction pressure increased, surface porosity decreased, and infrared optical contrast increased. In such samples, preferred orientations were favored for low applied pressures. These features clearly show that the main parameters conditioning the optical contrast should be the surface defects and porosity, not the preferred crystal orientations. As an additional interesting result, the surfaces formed from compacted nanocrystalline VO2 powders present improved optical contrast for reflectance and emissivity properties. 相似文献
14.
15.
高硬度的含氧化物纳米多层膜在工具涂层上具有重要的应用价值.研究了TiN/SiO22纳米多 层膜的晶体生长特征和超硬效应.一系列具有不同SiO22和TiN调制层厚的纳米多 层膜采用多 靶磁控溅射法制备;采用x射线衍射、x射线能量色散谱、高分辨电子显微镜和微力学探针表 征了多层膜的微结构和力学性能.结果表明,虽然以单层膜形式存在的TiN和SiO22分别形成 纳米晶和非晶结构,它们组成多层膜时会因晶体生长的互促效应而呈现共格外延生长的结构 特
关键词:
2纳米多层膜')" href="#">TiN/SiO22纳米多层膜
外延生长
非晶晶化
超硬效应 相似文献
16.
SiO2/TiO2/methylcellulose composite materials processed by the sol-gel technique were studied for optical waveguide applications. 相似文献
17.
Kangpei Zheng Ping LiuWei Li Fengcang MaXinkuan Liu Xiaohong Chen 《Applied Surface Science》2011,257(22):9583-9586
Artificially modulated CrAlN/AlON nanomultilayers were synthesized by direct current reactive magnetron sputtering. The microstructure and mechanical properties were evaluated by X-ray diffraction (XRD), high-resolution transmission electron microscopy (HRTEM) and nano-indentation techniques. The crystallization of AlON layer and its influence on the mechanical property of the nanomultilayers were studied. The results revealed that, under the template effect of NaCl structural CrAlN layer, amorphous AlON was forced to crystallize and grew epitaxially with CrAlN layer when AlON layer thickness was below 0.9 nm, leading to an increase of hardness up to 32.8 GPa. With the further increase of the AlON layer thickness, AlON layer gradually transformed into amorphous structure and blocked epitaxial growth of the multilayers, resulting in the decrease of hardness. The effect of CrAlN layer thickness on hardness of CrAlN/AlON nanomultilayers was also investigated. With the decrease of CrAlN layer thickness, the hardness increased gradually. The maximum hardness was 34.7 GPa when CrAlN layer thickness of was 3.0 nm. The strengthen mechanism of CrAlN/AlON nanomultilayers was finally discussed. 相似文献
18.
采用基于密度泛函理论的第一性原理方法,在局域密度近似(LDA)下研究了B掺杂Si/SiO_2界面及其在压强作用下的电子结构和光学性质.能带的计算结果表明:掺杂前后Si/SiO_2界面均属于直隙半导体材料,但掺B后界面带隙由0. 74 eV减小为0. 57 eV,说明掺B使材料的金属性增强;对B掺杂Si/SiO_2界面施加正压强,发现随着压强不断增大,Si/SiO_2界面的带隙呈现了逐渐减小的趋势,并且由直隙逐渐转变为间隙.光学性质的计算结果表明:掺B对Si/SiO_2界面在低能区(即红外区)的介电函数虚部、吸收系数、折射率以及反射率等光学参数有显著影响,且在红外区出现新的吸收峰;对B掺杂Si/SiO_2界面施加正压强,随着压强增大,红外区的吸收峰逐渐消失,而在紫外区出现了吸收峰.上述结果表明,对Si/SiO_2界面掺B及施加正压强均可调控Si/SiO_2界面的电子结构与光学性质.本文的研究为基于Si/SiO_2界面的光电器件研究与设计提供一定的理论参考. 相似文献
19.
G. Leahu R. Li Voti C. Sibilia M. Bertolotti V. Golubev D. A. Kurdyukov 《Optical and Quantum Electronics》2007,39(4-6):305-310
In this paper the thermal and optical properties of the SiO2/GaN synthetic opals are studied by photothermal deflection technique. This technique, used in different configurations, allows
to determine the effective thermal diffusivity and the absorption spectra. 相似文献
20.
Tian-Yu Wang 《中国物理 B》2021,30(12):128101-128101
In addition to electrical insulation properties, the thermal properties of nanodielectrics, such as glass transition temperature, thermal expansion coefficients, thermal conductivity, and mechanical properties, including Young's modulus, bulk modulus, and shear modulus, are also very important. This paper describes the molecular dynamics simulations of epoxy resin doped with SiO2 nanoparticles and with SiO2 nanoparticles that have been surface grafted with hexamethyldisilazane (HMDS) at 10% and 20% grafting rates. The results show that surface grafting can improve certain thermal and mechanical properties of the system. Our analysis indicates that the improved thermal performance occurs because the formation of thermal chains becomes easier after the surface grafting treatment. The improved mechanical properties originate from two causes. First, doping with SiO2 nanoparticles inhibits the degree of movement of molecular chains in the system. Second, the surface grafting treatment weakens the molecular repulsion between SiO2 and epoxy resin, and the van der Waals excluded region becomes thinner. Thus, the compatibility between SiO2 nanoparticles and polymers is improved by the grafting treatment. The analysis method and conclusions in this paper provide guidance and reference for the future studies of the thermal and mechanical properties of nanodielectrics. 相似文献