首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Halloysite nanotubes (HNTs) have been successfully modified using polyethyleneimine (PEI). HNTs and PEI-modified HNTs-filled 80/20 (wt/wt) polypropylene (PP)/acrylonitrile butadiene styrene (ABS) blends and its nanocomposites in the presence of dual compatibilizer have been prepared by melt mixing technique. The refinement in matrix–droplet morphology, selective localization of PEI-modified HNTs, increase in crystallinity of PP phase, formation of β-form of PP crystals and improved dispersion of PEI-modified HNTs in PP phase has resulted in a remarkable improvement in tensile modulus, impact strength and thermal stability of PEI-modified HNTs-filled 80/20 (wt/wt) PP/ABS blends in presence of dual compatibilizer. The increase in tensile modulus, tensile strength and impact strength for PEI-modified HNTs-filled 80/20 (wt/wt) PP/ABS blends in presence of dual compatibilizer are 28.8, 26.6 and 38.5%, respectively.  相似文献   

2.
In this article, the phase separation in the melt blended polycarbonate (PC) and ethylene propylene copolymer (EPC) has been studied with dynamic mechanical thermal analysis (DMTA) and scanning electron microscopy (SEM). Two glass transition temperatures on the tan δ curves were detected. This confirms the immiscibility of PC and EPC phases. Different content of multi-walled carbon nanotubes (MWCNTs) were added to the PC/EPC blends and the interfacial adhesion between MWCNTs and PC/EPC blend were shown using transmission electron microscopy (TEM). The MWCNTs were located in the PC phase and at the interfaces of PC and EPC phases. Moreover, the storage modulus (E′) of polymer blends was changed by the increasing content of EPC elastomer and MWCNTs. The value of E′ of PC decreased with an incorporation of EPC. While, along with an addition of MWCNTs in the PC/EPC blends an increase of E′ was visible. The strong interfacial interactions between the matrix and MWCNTs played the main role in increasing the values of the E′ of the nanocomposites.  相似文献   

3.
Thermal properties of polypropylene with poly(cis-butadiene) rubber (iPP/PcBR) blends have been measured by differential scanning calorimetry (DSC), and the melting point Tm, crystallization temperature Tc, enthalpy Δ H (melting enthalpies and crystalline enthalpies), and equilibrium melting point T0 m have been measured and calculated. The variation of Tm, Tc, Δ H and T0 m with composition in the blends was discussed, showing that an interaction between phases is present in iPP/PcBR blends. The degree of supercooling characterizing the interaction between two phases in the blends and the crystallizability of the blends which bears a relationship to the composition of the blends was discussed. The kinetics of isothermal crystallization of the crystalline phase in iPP/PcBR blends was studied in terms of the Avrami equation, and the Avrami exponent n and velocity constant K were obtained. The Avrami exponent n is between 3 and 2, meaning that iPP has a thermal nucleation with two dimensional growths. The variation of the Avrami exponent n, velocity constant K, and crystallization rate G bear a relation to the composition of the blends, n increases with increasing content ofPcBR. K also increased with increasing content of PcBR. All of the K for the blends are greater than for pure iPP. The crystallization rate G (t1/2) depends on the compositions in the blends; all G of the blends are greater than for iPP.  相似文献   

4.
The effect of surface modification of polypropylene (PP) film is induced by CO2 plasma in this study. The change in chemical structures on the surface of PP film is characterized by X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared (FT-IR). The polarity of modified surface of PP film is investigated by contact angle method. The compatibilization of interfaces between polypropylene and polystyrene phases in incompatible blends is studied by the treatment of plasma of CO2. Transition layer thickness is measured by small angle light scattering (SALS).  相似文献   

5.
《Composite Interfaces》2013,20(6):439-453
Fourier—transform infrared (FT-IR) with digital subtraction method has been applied to investigate the molecular interactions of immiscible polystyrene (PS)/bisphenol A polycarbonate (PC) blends and miscible PS/tetra-methyl PC (TMPC) blends. The FT-IR results show that there are no interactions for PS/PC, and the miscibility of PS/TMPC blends is mainly due to the intermolecular interaction between the phenyl ring of PS and the carbonate group of TMPC. The phenyl ring band of PS is linearly shifted to higher wave number with increasing concentration of TMPC, and the bandwidth at half maximum intensity of the carbonyl band of TMPC is linearly decreased with increasing concentration of PS. The amplitude of the interactional bands is decreased with increasing temperature consistent with LCST behavior of the blend. The miscibility of PS/TMPC and immiscibility of PS/PC has also been discussed in terms of local free-volume, self-interactions, and intermolecular interactions based on the chemical structures of PC and TMPC. Furthermore, the immiscibility behavior for blends of methyl-substituted PS and TMPC, and blends of PS and halogen-substituted PC has been explained in terms of intra and intermolecular interactions caused by steric and/or induction effects.  相似文献   

6.
聚丙烯中电树枝生长机理研究   总被引:1,自引:0,他引:1       下载免费PDF全文
迟晓红  高俊国  郑杰  张晓虹 《物理学报》2014,63(17):177701-177701
耐电树枝老化特性是表征聚合物绝缘材料介电性能的重要参数之一.聚丙烯(PP)是典型半结晶聚合物,其复杂的非均匀聚集态结构影响电树枝的生长.本文对PP及加入成核剂的PP试样进行了耐电树枝化性能实验,通过偏光显微镜(PLM)及差示扫描量热法(DSC)分析加入成核剂前后PP的结晶形态、结晶度以及结晶结构对电树枝生长特征的影响.以相界面自由能的热驱动作用以及放电雪崩理论为基础,对电树枝生长的热力学和动力学机理进行分析,阐明电场分布对电树枝生长的重要作用.根据半结晶材料的结晶相和非晶相的物理性能,建立材料内部电场分布计算模型,模拟针-板电极条件下聚合物材料内部的局域电场分布情况,分析了电树枝通道的动力学生长特征,探讨了成核剂改变PP的结晶结构抑制电树枝沿电场生长的作用.  相似文献   

7.
The crystallization behavior of uncompatibilized and reactive compatibilized poly(trimethylene terephthalate)/polypropylene (PTT/PP) blends was investigated. In both blends, PTT and PP crystallization rates were accelerated by the presence of each other, especially at low concentrations. When PP content in the uncompatibilized blends was increased to 50–60 wt%, PTT showed fractionated crystallization; a small PTT crystallization exotherm appeared at ~135°C besides the normal ~175°C exotherm. Above 70 wt% PP, PTT crystallization exotherms disappeared. In contrast, PP in the blends showed crystallization exotherms at 113–121°C for all compositions. When a maleic anhydride‐grafted PP (PP‐g‐MAH) was added as a reactive compatibilizer, the crystallization temperatures (T c ) of PTT and PP shifted significantly to lower temperatures. The shift of PTT's T c was larger than that of the PP, suggesting that addition of the PP‐g‐MAH had a larger effect on PTT's crystallization than on PP due to reaction between maleic anhydride and PTT.

The nonisothermal crystallization kinetics was analyzed by a modified Avrami equation. The results confirmed that PTT's and PP's crystallization was accelerated by the presence of each other and the effect varied with blend compositions. When the PP content increased from 0 to 60 wt%, PTT's Avrami exponent n decreased from 4.35 to 3.01; nucleation changed from a thermal to an athermal mode with three‐dimensional growths. In contrast, when the PTT content increased from 0 to 90 wt% in the blends, changes in PP's n values indicated that nucleation changed from a thermal (0–50 wt% PTT) to athermal (60–70 wt% PTT) mode, and then back to a thermal (80–90 wt% PTT) mode. When PP‐g‐MAH was added as a compatibilizer, the crystallization process shifted considerably to lower temperatures and it took a longer crystallization time to reach a given crystallinity compared to the uncompatibilized blends.  相似文献   

8.
陈志彬  黄美纯 《物理学报》2006,55(8):4337-4341
利用扩展Hückel分子轨道方法,运用BICON-CEDiT程序包计算了聚对苯撑及其系列烷氧基取代物的一维能带结构.计算结果表明:聚合物的能带结构在很大程度上受到杂原子、侧链等因素的影响,这与已知的实验结果相符;随着烷氧基侧链中C原子数的改变,聚合物的带隙呈现规律性变化.理论计算得到的带隙值与已有的实验观察值符合得相当好.  相似文献   

9.
To determine the factors influencing the retardation of the crystallization of poly(trimethylene terephthalate) (PTT) when PTT is blended with polycarbonate (PC), different PTT/PC blends were prepared via the melt mixing method. The relationships between the crystallization behavior and blend composition, as well as the phase morphology, were investigated. The results showed that the predominant reason for the retardation in crystallization is due to the PC content and phase morphology. The PC influences the crystallization of PTT via two methods. First, it retards PTT crystallization. Secondly, the PC exhibits a nucleation effect on the PTT crystallization which is, however, much weaker compared to the negative effect PC exerts with regards to PTT crystallization. When the processing temperature and shear rate remains unchanged, the two effects of PC determine the crystallization behavior of the blend. The phase morphology, which is strongly dependent on the mixing temperature and the shear rate, and which is also related to mixing time, had an appreciable impact on PTT crystallization. In the case of similar adhesion with the interface, a finer PC phase domain would show a slightly stronger nucleation effect on PTT crystallization.  相似文献   

10.
Isotactic polypropylene/poly(cis-butadiene) rubber (iPP/PcBR) blends were prepared by melt mixing. Isothermal crystallization and miscibility for neat iPP and blends of iPP/PcBR were investigated by differential scanning calorimetry. The presence of PcBR remarkably affected isothermal crystalline behaviors of iPP. An addition of PcBR caused shorter crystallization time and a faster overall crystallization rate, meaning a heterogeneous nucleation effect of PcBR upon crystallization of iPP. For the same sample, the crystallization peak was broader and the supercooling decreased as the crystallization temperature increased. The Avrami equation was suitable to describe the primary isothermal crystallization process of iPP and blends. The addition of PcBR led to an increase of values of the Avrami exponent n, which we suggest was because the blends had a stronger trend of instantaneous three-dimensional growth than neat iPP. The equilibrium melting point depression of the blends was observed, indicating that the blends were partly miscible in the melt.  相似文献   

11.
This paper reports a study of compatibilization and the mechanism of compatibilization of polypropylene (PP)/thermoplastic polyurethane (TPU) blends with maleated polypropylene (PP-MA) and its graft copolymer with polyethylene oxide (PEO), (PP-MA)-g-PEO. The results of scanning electron microscope (SEM) and dynamic mechanical analysis showed that (PP-MA)-g-PEO was a very good compatibilizer for PP/TPU blends, while PP-MA also produced some compatibilization. The cocrystallization between bulk PP and PP segments of the compatibilizers was evidenced by differential scanning calorimetry studies. The specific interaction between TPU and polar parts of the compatibilizers was studied with Fourier transform infrared spectroscopy.  相似文献   

12.
Presented work brings results of Laser-Induced Breakdown Spectroscopy (LIBS) and Thermo-Mechanical Analysis (TMA) of coals and coal blends used in coal fired power plants all over Spain. Several coal specimens, its blends and corresponding laboratory ash were analyzed by mentioned techniques and results were compared to standard laboratory methods. The indices of slagging, which predict the tendency of coal ash deposition on the boiler walls, were determined by means of standard chemical analysis, LIBS and TMA. The optimal coal suitable to be blended with the problematic national lignite coal was suggested in order to diminish the slagging problems.Used techniques were evaluated based on the precision, acquisition time, extension and quality of information they could provide. Finally, the applicability of LIBS and TMA to the successful calculation of slagging indices is discussed and their substitution of time-consuming and instrumentally difficult standard methods is considered.  相似文献   

13.
The data presented for polysulfone in o-dichlorobenzene support previous observations on other systems in which the heats of solution decrease linearly with increasing temperature of measurement. Consistent with similar measurements on polycarbonate and polyphenylene oxide, a dramatic slope change from 0.078 cal/g-C° below 120°C to 0.019 cal/g-C° above 120°C occur for the data on polysulfone. The source of these heats is due primarily to the enthalpy difference between the solid polymer and its corresponding liquid amorphous state at the measurement temperature since the heats of mixing are rationalized to be small.  相似文献   

14.
Isotactic polypropylene/poly(cis‐butadiene) rubber (iPP/PcBR) blends were prepared by melt mixing. The influence of PcBR content on crystalline morphology and nonisothermal crystallization behaviors of iPP was investigated by polarized optical microscopy (POM), small angle light scattering (SALS), and differential scanning calorimetry (DSC). The POM showed that an increase of PcBR ranging from 10 vol% to 40 vol% led to less perfection of spherulites, vaguer boundaries between spherulites, and smaller spherulite size, which was quantitatively validated by SALS. The presence of PcBR also remarkably affected the nonisothermal crystallization behaviors of iPP. An addition of PcBR caused higher crystallization peak temperature and a faster crystallization rate, meaning a heterogeneous nucleation effect of PcBR upon crystallization of iPP. For the same sample, the crystallization peak temperature moved to lower temperature and the crystallization rate increased as the cooling rate increased. The Ozawa and combined Avrami and Ozawa equations were used to describe the nonisothermal crystallization process of iPP and blends. The combined Avrami and Ozawa equation was more appropriate for the crystallization of the blends. Crystallization activation energy of iPP and blends was calculated by the Kissinger equation; the result showed that crystallization activation energy decreased as the content of PcBR increased from 30 vol% to 40 vol%.  相似文献   

15.
Halloysite nanotubes (HNTs) filled 80/20 (wt/wt) polypropylene (PP)/acrylonitrile butadiene styrene (ABS) blends and its composites in presence and absence of dual compatibilizer (polypropylene grafted maleic anhydride (PP-g-MA), and styrene-ethylene, butylene-styrene triblock copolymer grafted with maleic anhydrite (SEBS-g-MA)) have been prepared using twin screw extruder followed by injection moulding. Significant refinements in dispersed ABS droplets diameter and interparticle distance between dispersed ABS droplets were observed in case of HNTs filled 80/20 (wt/wt) PP/ABS blends and its composites in presence of PP-g-MA and SEBS-g-MA. This has resulted in significant enhancement in tensile and impact properties of HNTs filled 80/20 (wt/wt) PP/ABS blends and its composites in presence of PP-g-MA and SEBS-g-MA. Refinement in morphology of dispersed ABS phase results in decrease in crystallinity of HNTs filled 80/20 (wt/wt) PP/ABS blends and its composites in presence of PP-g-MA and SEBS-g-MA. In addition, HNTs act as heterogeneous nucleating agent for the growth of PP crystals, and hence crystallization rate of HNTs filled 80/20 (wt/wt) PP/ABS blends and its composites in presence and absence of PP-g-MA and SEBS-g-MA increases. Thermal stability also increases in case of HNTs filled 80/20 (wt/wt) PP/ABS blends and its composites in presence and absence of PP-g-MA and SEBS-g-MA.  相似文献   

16.
Two polypropylene (PP)/polylactide (PLA)/clay ternary nanocomposite systems, i.e. PP-rich and PLA-rich ones, each containing various amounts of one of two types of clay, were prepared by one step melt compounding in a twin screw extruder. The microstructures of the developed systems were correlated with tensile and impact properties. A theoretical calculation using wetting coefficients was used for predicting the clay nanoparticles localization in the blends. The nanoparticles were almost completely located within the PLA phase in both the PP-rich and PLA-rich systems, in good agreement with the predictions. Addition of a compatibilizer led to localization of the nanoparticles at the interfaces of the blends. From the wide angle X-ray scattering (WAXS) spectra it was concluded that the incorporation of clay led to intercalated structures in the both systems. The increase in impact toughness of the compatibilized blend nanocomposites, with respect to the uncompatibilized ones, was attributed to the weakened interfacial debonding in the presence of the interfacial-localized nanoparticles.  相似文献   

17.
Isotactic polypropylene/poly(cis-butadiene) rubber (iPP/PcBR vol%: 80/20) blends were prepared by melt mixing with various mixing rotation speeds. The effect of mixing technique on microstructure and impact property of blends was studied. Phase structure of the blends was analyzed by scanning electron microscopy (SEM). All of the blends had a heterogeneous morphology. The spherical particles attributed to the PcBR-rich phase were uniformly dispersed in the continuous iPP matrix. With increase of the mixing rotation speed, the dispersed phase particle's diameter distribution became broader and the average diameter of the separated particles increased. The spherulitic morphology of the blends was observed by small angle light scattering (SALS). Higher mixing rotation speed led to a more imperfect spherulitic morphology and smaller spherulites. Crystalline structure of the blends was measured by wide angle X-ray diffraction (WAXD) and small angle X-ray scattering (SAXS). The introduction of 20 vol% PcBR induced the formation of iPPβ crystals. Higher rotation speed led to a decrease in microcrystal dimensions. However, the addition of PcBR and the increase of mixing rotation speed did not affect the interplanar distance. The long period values were the same within experimental error as PcBR was added or the mixing rotation speed quickened. The normalized relative degree of crystallinity of the blends slightly increased under lower rotation speeds (30 and 45 rpm) and decreased under higher rotation speeds. The notched Izod impact strength of the blends was enhanced as a result of the increase of mixing rotation speed.  相似文献   

18.
A range of blends based on 70 wt% of poly(trimethylene terephthalate) PTT with 30 wt% dispersed phase were produced via melt blending. The dispersed phase composition was varied from pure maleic anhydride grafted poly(ethylene-octene) (POE-g-MA) over a range of POE-g-MA:polypropylene (PP) ratios. The micromorphology and mechanical properties of the ternary blends were investigated. The results indicated that the domains of the POE-g-MA are dispersed in the PTT matrix, and at the same time the POE-g-MA encapsulate the PP domains. The interfacial reaction between the hydroxyl-end group of PTT and maleic anhydride (MA) during melt blending changes the formation from “isolated formation” to “capsule formation,” where the PP domains are encapsulated by POE-g-MA. Compared to the PTT/POE-g-MA blends, mechanical properties of ternary blends, such as tensile strength and Young's modulus, were improved significantly.  相似文献   

19.
Maleated poly(ethylene-octene) (POE-g-MAH), as a compatilizer and toughener, was incorporated in polypropylene/hollow glass microspheres (PP/HGM) binary composites, and the phase structure and thermal and mechanical properties of these composites were investigated. Scanning electron microscopy analysis indicated that the phase structure of ternary composites could be controlled by POE-g-MAH and the surface treatment of HGM. Fourier transform infrared spectroscopy revealed that there was an amidation reaction between the treated HGM and POE-g-MAH during melt compounding. Differential scanning calorimetry suggested that the crystallization and melting behaviors of ternary composites were influenced by phase structure. Evaluation of mechanical properties showed that the amide linkage between the treated HGM and POE-g-MAH was favorable for improving the properties of ternary composites.  相似文献   

20.
We have studied stimulated Raman (SRS) conversion to the first Stokes component of multimode (M2 = 8) radiation from a YAG:Nd laser with lasing wavelengths of 1.319 μm, 1.338 μm, and 1.357 μm in a barium nitrate crystal. We have obtained pulses of converted radiation with energies up to 120 mJ. We have achieved conversion efficiencies greater than 40% for each of the three Raman laser wavelengths of 1.530 μm, 1.556 μm, and 1.582 μm with divergence of the beams of converted radiation close to the diffraction-limited value (M2 < 1.5). __________ Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 73, No. 3, pp. 330–334, May–June, 2006.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号