首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Cyclic ethers such as trioxane and 3,3-bis(chloromethyl)oxetane have been polymerized easily in the presence of maleic anhydride by the irradiation of γ-rays and ultraviolet light. The polymer formed is a homopolymer of cyclic ether. The rate of polymerization is accelerated by suitable amounts of oxygen which is required to form some active species at the initiation step. The polymerization is inhibited by the addition of a small amount of radical scavenger, thus suggesting a radical initiating mechanism. In addition, the polymerization is easily initiated by benzoyl peroxide even in vacuo at or above 50°C. Diaroyl and diacyl peroxides are also effective, and polymerization also proceeds in the presence of chloromaleic anhydride, exactly in the same manner as in maleic anhydride. On the other hand, it is well known that polymerization of these cyclic monomers rarely occurs with radical catalysts and easily with cationic catalysts in the absence of maleic anhydride. From these results, it may be concluded that the polymerization is brought about by means of a radical–cationic species.  相似文献   

2.
Since the copolymers of maleic anhydride, a cyclic monomer, and vinyl ethers, such as isobutyl vinyl ether, are made of rigidly alternating monomer unit sequences, quasi "isotactic" and quasi "syndiotactic" configurations for the monomer unit diads and triads are proposed considering the relative orientation of the cyclic anhydride group and the ether side chain with respect to the copolymer backbone.  相似文献   

3.
A method is presented for the initiation of free‐radical and free‐radical‐promoted cationic photopolymerizations by in‐source lighting in the near‐infrared (NIR) region using upconverting glass (UCG). This approach utilizes laser irradiation of UCG at 975 nm in the presence of fluorescein (FL) and pentamethyldiethylene triamine (PMDETA). FL excited by light emitted from the UCG undergoes electron‐transfer reactions with PMDETA to form free radicals capable of initiating polymerization of methyl methacrylate. To execute the corresponding free‐radical‐promoted cationic polymerization of cyclohexene oxide, isobutyl vinyl ether, and N ‐vinyl carbazole, it was necessary to use FL, dimethyl aniline (DMA), and diphenyliodonium hexafluorophosphate as sensitizer, coinitiator, and oxidant, respectively. Iodonium ions promptly oxidize DMA radicals formed to the corresponding cations. Thus, cationic polymerization with efficiency comparable to the conventional irradiation source was achieved.  相似文献   

4.
Solution polymerizations of allyl(o-vinyl phenyl)ether and allyl(p-vinyl phenyl)ether with cationic and radical initiators were investigated. Soluble polymers were formed in polymerizations with boron trifluoride etherate and with benzoyl peroxide. In polymerization with azobisisobutyronitrile the polymerization in dilute solution gave a soluble polymer, whereas that in concentrated solution gave a crosslinked, insoluble one. For informationon the polymerization behavior some infrared and ultraviolet spectroscopic investigations of the soluble polymers were made. From these results it appears that polymers with pendant allyl groups are formed in polymerization with boron trifluoride etherate at low temperature, and polymers containing pendant vinyl groups and allyl groups are obtained with the two types of radical initiator. Copolymerizations of these monomers with ethyl vinyl ether and styrene with the use of boron trifluoride etherate were sucessfully effected. Such reactions as Claisen rearrangement, crosslinking induced with radical initiators, and epoxidation with perbenzoic acid were examined for the polymers prepared in the polymerization with boron trifluoride etherate. Good results were obtained for the former two reactions. However, the latter was unsuccessful.  相似文献   

5.
A new synthetic approach for the preparation of block copolymers by mechanistic transformation from atom transfer radical polymerization (ATRP) to visible light‐induced free radical promoted cationic polymerization is described. A series of halide end‐functionalized polystyrenes with different molecular weights synthesized by ATRP were utilized as macro‐coinitiators in dimanganese decacarbonyl [Mn2(CO)10] mediated free radical promoted cationic photopolymerization of cyclohexene oxide or isobutyl vinyl ether. Precursor polymers and corresponding block copolymers were characterized by spectral, chromatographic, and thermal analyses.  相似文献   

6.
Polyethylene has been grafted with maleic anhydride, as proved by the infrared spectra and the properties of the grafted films. The influence of oxygen and a comparison of the effectiveness of benzoyl peroxide and AIBN showed that polyethylene macroradicals are formed through the decomposition of hydroperoxide and peroxide groups. Side chains of poly(maleic anhydride) are formed by a combination of polyethylene macroradicals with those of poly(maleic anhydride). This mechanism of reaction was confirmed by the influence of the amount of film, the initiator and monomer concentrations, and temperature on the percentage of grafting.  相似文献   

7.
异丁基乙烯基醚与受电子单体的可控自由基共聚合   总被引:3,自引:0,他引:3  
近年来发展起来的“活性” 可控自由基聚合越来越为人们所关注 ,其原因在于采用这种方法不仅可以设计聚合物的分子量 ,得到窄分布聚合物 ,而且聚合条件不象活性离子型聚合那样严格 ,单体适用范围相对较广 .关于烯类单体的活性自由基聚合迄今主要有 :氮氧自由基调控的稳定自由基聚合 (Stablefreeradicalpolymerization ,简称SFRP) [1] 、原子转移自由基聚合 (Atomtransferradicalpolymerization ,简称ATRP) [2 ] 以及以后发展起来的自由基可逆加成 断链链转移聚合…  相似文献   

8.
A metal‐free, cationic, reversible addition–fragmentation chain‐transfer (RAFT) polymerization was proposed and realized. A series of thiocarbonylthio compounds were used in the presence of a small amount of triflic acid for isobutyl vinyl ether to give polymers with controlled molecular weight of up to 1×105 and narrow molecular‐weight distributions (Mw/Mn<1.1). This “living” or controlled cationic polymerization is applicable to various electron‐rich monomers including vinyl ethers, p‐methoxystyrene, and even p‐hydroxystyrene that possesses an unprotected phenol group. A transformation from cationic to radical RAFT polymerization enables the synthesis of block copolymers between cationically and radically polymerizable monomers, such as vinyl ether and vinyl acetate or methyl acrylate.  相似文献   

9.
Different combinations of acetals with trimethylsilyl iodide have been explored as new initiating systems for the vinyl ether polymerization. The resulting polymers are characterized by controlled molecular weights and narrow molecular weight distributions, confirming the living polymerization mechanism. Acetals can also be used as transfer agents in the polymerization of vinyl ethers. When using 1,1-diethoxyethane (DEE) as transfer agent and isobutyl vinyl ether (IBVE) as monomer, a transfer constant of 0.2 was obtained (at −40°C in toluene). This method, transposed to functional acetals, provides a new way to prepare polyvinyl ethers with one or two functional end groups. The cationic polymerization of isobutyl vinyl ether initiated with the combination triflic acid/thietane, where thietane acts as electron donating moderator, leads to star-shaped polyvinylether-polythietane block-copolymers (at −40°C in dichloromethane). The block-copolymer structure is obtained because the vinyl ether polymerization is stopped when the α-alkoxy thietanium ion (active species) is attacked by a thietane molecule, which is at the same time an initiation reaction for the thietane polymerization. The star-shaped structure of the block-polymer is the result of the intermolecular termination in the cationic polymerization of thietane. When using a bifunctional initiator system, a polymer network is obtained consisting of linear polyIBVE-segments interconnected by branched polythietane segments. These findings support the sulfonium ion structure of the active species in the cationic polymerization of vinyl ethers initiated by the acid-sulfide system.  相似文献   

10.
低丁二烯含量的丙烯-丁二烯混合单体在负载型钛系催化剂中发生聚合。考察了催化剂Ti浓度、Al/Ti比、苯甲酸乙酯(EB)浓度、聚合温度和聚合溶剂对共聚催化效率、共聚物中丁二烯链节含量和共聚物的比浓粘度的影响。用乙烯基单体在低丁二烯链节含量的共聚物上进行接枝试验,初步结果表明丙烯链上引入不饱和键可以提高其接枝能力。  相似文献   

11.
Some unsaturated monomers bearing hindered phenol and arylamine groups capable of forming stable radicals were prepared. Radical polymerizations of vinyl monomers having such groups were investigated with the use of azobisisobutyronitrile, benzoyl peroxide, cumene hydroperoxide, and tetraethylthiuram disulfide as initiator. Polymerizations of these monomers went normally only when azobisisobutyronitrile was used as initiator. The other initiators inhibited polymerizations remarkably or completely. The results suggest that radicals resulting from benzoyl peroxide and cumene hydroperoxide or tetraethylthiuram disulfide abstract hydrogen of the phenol or the amine to produce the stable radicals, thereby inhibiting the polymerization. Meanwhile, carbon radicals resulting from azobisisobutyronitrile add selectively to the vinyl double bonds of the monomers to initiate the polymerizations. The vinyl derivatives as well as allyl derivatives and cinnamic acid derivatives copolymerize easily with conventional monomers such as styrene, maleic anhydride, and butadiene, again, only when azobisisobutyronitrile was used as initiator. Antioxidative properties for styrene copolymers and butadiene-styrene copolymers incorporating the hindered phenol monomers were investigated.  相似文献   

12.
Laser-initiated polymerization of cyclohexene oxide in the presence of maleic anhydride was investigated. The influences of solvents laser irradiation time and the monomer feed ratio on the polymer yield and composition were evaluated. The rate of polymerization increased with an increase in the molar concentration of maleic anhydride in the monomer feed. Short irradiation times of 1–3 min duration gave very high yield of epoxy polymer (>80% conversion). Infrared spectral studies of the polymer product indicated the formation of polyether linkage at lower levels of conversion and an adduct of polyether and maleic anhydride at higher polymer conversions. The quantitative chemical analyses results also showed similar results. The results indicated that the polymerization was initiated by the excited charge transfer complex between the electron donor, cyclohexane oxide, and the electron acceptor–maleic anhydride. In the initial stages of polymerization, cyclohexene oxide undergoes a cationic polymerization in the presence of the radical anion of maleic anhydride. Laser-initiated polymerization of cyclohexene oxide/maleic anhydride is several hundred times more efficient than UV-initiated polymerization, as measured by the energy absorbed by the polymer system.  相似文献   

13.
Herein, we clarified the ring-expansion cationic polymerization with a cyclic hemiacetal ester (HAE)-based initiator was versatile in terms of applicable vinyl ether monomers. Although there was a risk that higher reactive vinyl ethers may incur β-H elimination of the HAE-based cyclic dormant species to irreversibly give linear chains, the polymerizations were controlled to give corresponding cyclic polymers from various alkyl vinyl ethers of different reactivities. Functional vinyl ether monomers were also available, and for instance a vinyl ether monomer carrying an initiator moiety for metal-catalyzed living radical polymerization in the pendant allowed construction of ring-linear graft copolymers through the grafting-from approach. Furthermore, ring-based gel was prepared via the addition of divinyl ether at the end of the ring-expansion polymerization, where multi HAE bonds cyclic polymers or fused rings were crosslinked with each other. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 3082–3089  相似文献   

14.
The bulk polymerization of maleic anhydride initiated with acylperoxides, di-tert-butyl peroxide, AIBN, or pyridine proceeds with evolution of CO2. The amount of CO2 generated depends on the nature and the concentration of the initiator. With peroxide initiators, less than 5% of the polymerized maleic anhydride is decarboxylated. 1H-NMR spectra, obtained on the benzoyl peroxide-initiated polymer and its methyl ester, are consistent with the unrearranged poly(maleic anhydride) structure and rule out the polycyclopentanone structure proposed by Braun and co-workers. Base-initiated polymaleic anhydride is substantially decarboxylated, and the resulting polymer has anhydride and carboxyl groups. Elemental analyses and 1H-NMR spectra obtained on the pyridine-initiated polymer and its methyl ester refute both the cis-poly(vinylene ketoanhydride) structure suggested by Schopov and the polycylopentanone structure proposed by Braun and co-workers.  相似文献   

15.
Bulk polymerization of isobutyl vinyl ether was studied at 25°C in a wide dose rate range, 8.2-277 rad/sec by γ rays and 8.8 × 103-2.2 × 105 rad/sec by electron beams. At low dose rate, 8.2-277 rad/sec, only the radical polymerization took place. At high dose rate exceeding 8.8 × 103 rad/sec, cationic polymerization was found to occur in addition to the radical polymerization. DP n of the product at high dose rate was 9-10. Further drying of the monomer increased Rp, and molecular weight of the product formed by cationic mechanism also increased.  相似文献   

16.
Polyethylene has been grafted in a reaction with poly(maleic anhydride) in the presence of radical initiators. The role of oxygen, the comparison of the effectiveness of benzoyl peroxide and AIBN, and the kinetics of the reaction suggest that side chains are formed via a combination of the macroradicals of both polymers.  相似文献   

17.
The polymerizations of acrylonitrile (AN), acrolein (AL), butadiene (BD), and isobutyl vinyl ether (EBVE) with cobaltocene were investigated. It was found that both AN and AL could polymerize in dimethyl sulfoxide through a coordination mechanism, but AN and BD polymerized by a radical mechanism in the presence of some organic halides, such as carbon tetrachloride, benzyl bromide, and allyl bromide. The initiator system of cobaltocene and organic halide also induced cationic polymerization of IBVE. On the basis of the results obtained, a mechanism for the selective initiation of polymerization is proposed and discussed.  相似文献   

18.
Formulations containing vinyl ethers and epoxy were successfully polymerized through a radical-induced cationic frontal polymerization mechanism, using an iodonium salt superacid generator with a peroxide thermal radical initiator and fumed silica as a filler. It was found that an increase of vinyl ether content resulted in higher front velocities for divinyl ethers in formulations with trimethylolpropane triglycidyl ether. However, increased hydroxymonovinyl ether either decreased the front velocity or suppressed frontal polymerization. The kinetic effects of the superacid generator and thermal radical initiator with varying vinyl ether content were also studied. It was observed that increasing concentrations of initiators increased the front velocity, with the system exhibiting higher sensitivity to the superacid generator concentration.  相似文献   

19.
The cationic polymerization of isobutyl vinyl ether initiated with the title system apparently has some features of a living polymerization (linear increase of number average molecular weight M̄n with conversion). However, evidence is given for the occurrence of a transfer reaction resulting in the increase of the number of macromolecules, and this even for relatively low molecular weights.  相似文献   

20.
超临界CO2中的高分子合成研究进展   总被引:7,自引:0,他引:7  
本文介绍以超临界CO2流体为介质的高分子合成的研究进展。说明可在超临界二氧化碳中实施氟代单体的自由基溶液聚合、甲基丙烯酸甲酯和苯乙烯的分散聚合、丙烯酸的沉淀聚合、丙烯酰胺的反相乳液聚合以及异丁基乙烯基醚的阳离子聚合等多种聚合反应。这显示出超临界CO2是一种对环境无污染且价廉的替代溶剂。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号