首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Li J  Koga M  Brochu D  Yuki N  Chan K  Gilbert M 《Electrophoresis》2005,26(17):3360-3368
Lipooligosaccharide (LOS) is the major component of the external membrane of Campylobacter jejuni. LOS contains a hydrophobic moiety, lipid A, and a hydrophilic moiety, oligosaccharide. Due to the unique mimicry of human ganglioside structures and potential involvement in the induction of the autoimmune polyneuropathies, Guillain-Barré and Miller Fisher syndromes, the structural characterization of C. jejuni LOS has received much attention. We have been using capillary zone electrophoresis-mass spectrometry to analyze O-deacylated LOS from C. jejuni. In an attempt to optimize the separation conditions, the effect of methanol on the separation of LOS was investigated. It was found that methanol resulted in stronger adsorption of LOS onto the wall of fused-silica capillary. In this paper, we applied this adsorption to perform electrophoresis-assisted open-tubular liquid chromatography electrospray mass spectrometry for the analysis of O-deacylated LOS mixtures from C. jejuni. The analytical potential of the proposed strategy for the analysis of O-deacylated LOS glycoforms from five bacterial colonies is demonstrated. Online tandem mass spectrometry is shown to provide a powerful tool for characterization of variations in the hexosamine backbone, phosphorylation of the lipid A, and sialic acid sequence information.  相似文献   

2.
Sialylated lipopolysaccharide (LPS) glycoforms from Haemophilus influenzae were characterized by tandem mass spectrometry using a new generation hyphenated mass spectrometer which combines a triple quadrupole and a linear ion trap (Q-Trap). The fragmentation of both protonated and sodiated molecular ions from O-deacylated LPS (LPS-OH) obtained in MS(2) experiments in the positive mode was studied. The MS(2) spectra of protonated ions provided unambiguous evidence for the presence and sequence of sialylated lactosamine present in lacto-N-neotetraose oligosaccharide extensions but not for sialyl-lactose structures whilst fragmentation of sodiated adducts, [M+Na](+), afforded information diagnostic of mono- and disialylated lactose extensions. To study this we used a highly sialylated LPS from a H. influenzae strain capable of sialyl-lactose expression only. We then applied the method to the H. influenzae genome strain, Rd, in which glycoforms containing both sialyl-lactose and sialyl-lacto-N-neotetraose were detected from diagnostic B-ions at m/z 638.2 ([Neu5Ac(1) Hex(2)+Na](+)) and 657.2 ([Neu5Ac(1) Hex(1) HexNAc(1)+H](+)). Unique fragmentation patterns provided the locations and sequences of these oligosaccharide extensions. This is the first time both sialylated lactose and sialylated lacto-N-neotetraose units have been detected and characterized by tandem mass spectrometry in the same molecule. This methodology is of general applicability for determination of common sialylated oligosaccharide extension in bacterial LPS.  相似文献   

3.
A method, which utilizes microwave-assisted partial acid hydrolysis and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOFMS), to elucidate oligosaccharide composition of intact glycoproteins is presented here. Glycoproteins, such as ribonuclease B, avidin, alpha1-acid glycoprotein, and fetuin, are used as model systems to demonstrate this technique. Partial cleavage of oligosaccharides from whole intact glycoproteins with trifluoroacetic acid was observed after a short exposure to microwaves. Due to the high-resolution mass spectra obtained by MALDI-TOFMS from glycoproteins with molecular weights less than 20 kDa, the compositions of oligosaccharides are readily derived for ribonuclease B and avidin. The data agree with the proposed oligosaccharide structures of ribonuclease B (five glycoforms) and avidin (eight glycoforms). Larger glycoproteins such as alpha1-acid glycoprotein (many glycoforms) and fetuin (many glycoforms) exhibited only broad peaks with no glycoform resolution. Nevertheless, this method can be used successfully for analysis of glycoproteins with molecular weights greater than 20 kDa to determine the presence or absence of glycosylation.  相似文献   

4.
Lipooligosaccharides (LOS) are major microbial virulence factors displayed on the outer membrane of rough-type Gram-negative bacteria. These amphipathic glycolipids are comprised of two domains, a core oligosaccharide linked to a lipid A moiety. Isolated LOS samples are generally heterogeneous mixtures of glycoforms, with structural variability in both domains. Traditionally, the oligosaccharide and lipid A components of LOS have been analyzed separately following mild acid hydrolysis, although important acid-labile moieties can be cleaved. Recently, an improved method was introduced for analysis of intact LOS by MALDI-TOF MS using a thin layer matrix composed of 2,4,6-trihydroxyacetophenone (THAP) and nitrocellulose. In addition to molecular ions, the spectra show in-source “prompt” fragments arising from regiospecific cleavage between the lipid A and oligosaccharide domains. Here, we demonstrate the use of traveling wave ion mobility spectrometry (TWIMS) for IMS-MS and IMS-MS/MS analyses of intact LOS from Neisseria spp. ionized by MALDI. Using IMS, the singly charged prompt fragments for the oligosaccharide and lipid A domains of LOS were readily separated into resolved ion plumes, permitting the extraction of specific subspectra, which led to increased confidence in assigning compositions and improved detection of less abundant ions. Moreover, IMS separation of precursor ions prior to collision-induced dissociation (CID) generated time-aligned, clean MS/MS spectra devoid of fragments from interfering species. Incorporating IMS into the profiling of intact LOS by MALDI-TOF MS exploits the unique domain structure of the molecule and offers a new means of extracting more detailed information from the analysis.
Graphical Abstract ?
  相似文献   

5.
Selective glycopeptide mapping of recombinant human erythropoietin (rhEPO) used as a model glycoprotein was successfully carried out by on-line high-performance liquid chromatography-electrospray ionization mass spectrometry (LC-ESI-MS) using a Vydac C18 column eluted in acetonitrile-1 mM ammonium acetate, pH 6.8. rhEPO expressed in a Chinese hamster ovary clone was exhaustively digested into four glycopeptides and nine peptides with endoproteinase Glu-C. Both glycopeptides and peptides were eluted with trifluoroacetic acid as the eluent, whereas only glycopeptides were eluted selectively with ammonium acetate in the following order: N38, N24, 0126, and N83. Furthermore, many glycoforms included in each glycopeptide were found to be separated by differences in the numbers of sialic acid and N-acetyllactosaminyl repeats. Twenty, 16 and 22 different N-linked oligosaccharides were determined at Asn24, 38, and 83, respectively, and two different O-linked oligosaccharides were observed at Ser126. Our method is simple, rapid, and useful for determining the carbohydrate structures at each glycosylation site and for elucidating the site-specific carbohydrate heterogeneity.  相似文献   

6.
Lipooligosaccharides (LOS) are powerful Gram-negative glycolipids that evade the immune system and invade host animal and vegetal cells. The structural elucidation of LOS is pivotal to understanding the mechanisms of infection at the molecular level. The amphiphilic nature of LOS has been the main obstacle for structural analysis by matrix-assisted laser desorption/ionization (MALDI) mass spectrometry (MS). Our approach has resolved this important issue and has permitted us to obtain reflectron MALDI mass spectra of LOS to reveal the fine chemical structure with minimal structural variations. The high-quality MALDI mass spectra show LOS species characteristic of molecular ions and defined fragments due to decay in the ion source. The in-source decay yields B-type ions, which correspond to core oligosaccharide(s), and Y-type ions, which are related to lipid A unit(s). MALDI tandem time-of-flight (TOF/TOF) MS of lipid A allowed for the elucidation of its structure directly from purified intact LOS without the need for any chemical manipulations. These findings constitute a significant advancement in the analysis of such an important biomolecule by MALDI MS.  相似文献   

7.
Matrix-assisted laser desorption ionization (MALDI) with a time-of-flight analyzer has been used to analyze bacterial lipooligosaccharides (LOS). Crude LOS preparations from pathogenic strains of Haemophilus influenzae and Haemophilus ducreyi and a commercial preparation of lipopolysaccharide from Salmonella typhimurium were treated with hydrazine to remove O-linked fatty acids on the lipid A moiety. The resulting O-deacylated LOS forms were water soluble and more amenable to cocrystallization with standard MALDI matrices such as 2,5-dihydroxybenzoic acid and 1-hydroxyisoquinoline. Under continuous extraction conditions, O-deacylated LOS yielded broad peaks with abundant salt adducts as well as forming prompt fragments through β-elimination of phosphoric acid, that is, [M-H3PO4-H]. However, when a time delay was used between ionization and extraction (“delayed extraction”) a significant improvement was seen in both mass resolution and the stability of the molecular ions against β-elimination of phosphoric acid, especially in the negative-ion mode. Both an external two-point calibration and an internal single-point calibration were used to assign masses, the latter of which provided the highest degree of accuracy (better than 0.01% in most cases). At higher laser powers, the LOS molecules cleave readily between the oligosaccharide and lipid A moieties yielding a number of prompt fragments. Postsource decay (PSD) analysis of selected molecular ions provided a set of fragments similar to those seen in the linear spectra, although they were more limited in number because they were derived from a single LOS-glycoform. Both the prompt and PSD fragments provided important structural information, especially in assigning the phosphate and phosphoethanolamine substitution pattern of the lipid A and oligosaccharide portions of LOS. Last, with the addition of ethylenediaminetetraacetic acid followed by pulsed sonication, the relatively insoluble (and impure) LOS preparations yielded MALDI spectra similar to the O-deacylated LOS, although these intact LOS preparations required higher laser powers to ionize and were generally more affected by competing impurities.  相似文献   

8.
The molecular structure of the wild strain of the lipopolysaccharide core of Aeromonas salmonicida, ssp salmonicida has been sequenced using tandem mass spectrometry. The core oligosaccharide was determined to contain an O-4 phosphorylated and O-5 substituted Kdo reducing group, and its structure is proposed as the follows: [structure: see text] After the core oligosaccharide of LPS was released from the lipid A portion by conventional treatment with 1% acetic acid, we demonstrated the existence of a homogeneous mixture composed mainly of the native core oligosaccharide containing the Kdo with its O-4 phosphate group intact, and a degraded core oligosaccharide mixture, which eliminated the O-4 phosphate group with extreme facility. The precise molecular structure and glycone sequence of the homogeneous mixture of phosphorylated and dephosphorylated core oligosaccharides was determined by electrospray ionization (ESI) mass spectrometry and tandem mass spectrometric analysis. CID-MS/MS of the homogeneous mixture of permethylated core oligosaccharides afforded a series of diagnostic product ions which confirmed the established sequence of the glycones to be determined. Matrix-assisted laser desorption/ionization (MALDI) tandem mass spectrometry reconfirmed the molecular structure of the dephosphorylated homogeneous permethylated mixture of the core oligosaccharides containing the diastereomeric 4,8- and 4,7-anhydro-alpha-keto acids.  相似文献   

9.
A method based on sequential degradation, p-aminobenzoic ethyl ester (ABEE) closed-ring labeling, and negative ion electrospray ionization tandem mass spectrometry is presented for the study of linkage and branch determination for N-linked oligosaccharides. Closed-ring labeling provides greater linkage information than the more popular open-ring reductive amination approach. In addition, after high-performance liquid chromatography (HPLC) separation, closed-ring labeling allows for regeneration of the underivatized oligosaccharide, a requirement for alkaline sequential degradation. The analytical scheme presented here uses HPLC separation of closed-ring labeled oligosaccharides to resolve the mixture into individual forms that undergo subsequent structural analysis by negative ion tandem mass spectrometry. To facilitate complete structural analysis, particularly for larger sugars, the closed-ring labels are removed and the sugars are sequentially degraded by controlled alkaline hydrolysis. It is noteworthy that for sugars containing sialic acid moieties, a protecting group must be used to stabilize sialic acid groups during sequential alkaline degradation. This described approach was applied to two high mannose oligosaccharides M5G2, M6G2 cleaved from the ribonuclease B and a complex oligosaccharide A2 cleaved from transferrin.  相似文献   

10.
Structural characterization of sulfated glycans through mass spectrometry (MS) has been often limited by their low abundance in biological materials and inefficient ionization in the positive-ion mode. Here, we describe a microscale method for sequentially enriching sulfated glycans according to their degree of sulfation. This method is based on modifying the binding ability of strong anion-exchange material through the use of different sodium acetate concentrations, thus enabling fairly selective binding and a subsequent elution of different glycans according to their degree of sulfation. Before this enrichment, the negative charge on the sialic acid, which is commonly associated with such glycans, was eliminated through permethylation that is used to enhance the positive-ion mode matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-MS) signal for all glycans. This enrichment approach minimizes competitive ionization between sulfated and neutral glycans, as well as that between sulfated species with a different degree of sulfation. The described method was initially optimized using sulfated oligosaccharide standards, while its potential has been verified for the sulfated N-glycans originated from the bovine thyroid-stimulating hormone (bTSH), a glycoprotein possessing mono- and disulfated N-glycans. This enhancement of the MALDI-MS signal facilitates analysis of some otherwise undetected components.  相似文献   

11.
An investigation of the gas phase chemistry of proton bound oligosaccharide (S)-ligand (L) non-covalent complexes, [S + H + L](+) has been carried out using electrospray ionization (ESI) and tandem mass spectrometry in a quadrupole ion trap. When subjected to collision-induced dissociation (CID), these [S + H + L](+) complexes undergo a range of reactions that can be broadly classified into three main types: (1) Simple dissociation into the individual monomers; (2) cleavage of the oligosaccharide to form B-type sequence ions; (3) cleavage of the ligand species. The second type of reaction is particularly interesting as it can produce a "ladder series" of [B(x) + L](+) ions via ligand induced oligosaccharide bond cleavage. This novel gas phase reaction greatly simplifies the sequencing of oligosaccharides. Both the oligosaccharide and ligand were found to influence the type of reaction pathway observed, with the "ladder series" of [B(x) + L](+) ions being favored for permethylated oligosaccharides and for bifunctional ligands. Cytosine is a particularly good ligand at facilitating the formation of [B(x) + L](+) ions. Analogies with condensed phase chemistry of sugars is made and a potential mechanism for ligand induced oligosaccharide bond cleavage is proposed.  相似文献   

12.
The identification of glycosylation sites in proteins is often possible through a combination of proteolytic digestion, separation, mass spectrometry (MS) and tandem MS (MS/MS). Liquid chromatography (LC) in combination with MS/MS has been a reliable method for detecting glycopeptides in digestion mixtures, and for assigning glycosylation sites and glycopeptide sequences. Direct interfacing of LC with MS relies on electrospray ionization, which produces ions with two, three or four charges for most proteolytic peptides and glycopeptides. MS/MS spectra of such glycopeptide ions often lead to ambiguous interpretation if deconvolution to the singly charged level is not used. In contrast, the matrix-assisted laser desorption/ionization (MALDI) technique usually produces singly charged peptide and glycopeptide ions. These ions require an extended m/z range, as provided by the quadrupole-quadrupole time-of-flight (QqTOF) instrument used in these experiments, but the main advantages of studying singly charged ions are the simplicity and consistency of the MS/MS spectra. A first aim of the present study is to develop methods to recognize and use glycopeptide [M+H]+ ions as precursors for MS/MS, and thus for glycopeptide/glycoprotein identification as part of wider proteomics studies. Secondly, this article aims at demonstrating the usefulness of MALDI-MS/MS spectra of N-glycopeptides. Mixtures of diverse types of proteins, obtained commercially, were prepared and subjected to reduction, alkylation and tryptic digestion. Micro-column reversed-phase separation allowed deposition of several fractions on MALDI plates, followed by MS and MS/MS analysis of all peptides. Glycopeptide fractions were identified after MS by their specific m/z spacing patterns (162, 203, 291 u) between glycoforms, and then analyzed by MS/MS. In most cases, MS/MS spectra of [M+H]+ ions of glycopeptides featured peaks useful for determining sugar composition, peptide sequence, and thus probable glycosylation site. Peptide-related product ions could be used in database search procedures and allowed the identification of the glycoproteins.  相似文献   

13.
14.
The fungus Botrytis cinerea is a ubiquitous plant pathogen that infects more than 200 different plant species and causes substantial economic losses in a wide range of agricultural crops and harvested products. Endopolygalacturonases (EPGs) are among the first array of cell-wall-degrading enzymes secreted by fungi during infection. Up to 13 EPG glycoforms have been described for B. cinerea. The presence of multiple N-linked glycosylation modifications in BcPG1-6 is predicted by their deduced amino acid sequences. In this work, the glycosylation sites and the attached oligosaccharide structures on BcPG6 were analyzed. The molecular mass of the intact glycoprotein was determined by matrix-assisted laser desorption/ionization time-of-flight mass spectrometric (MALDI-TOFMS) analysis. BcPG6 contains seven potential N-linked glycosylation sites. Occupancy of these glycosylation sites and the attached carbohydrate structures were analyzed by tryptic digestion followed by liquid chromatography/mass spectrometry (LC/MS) using a stepped orifice voltage approach. Five out of seven potential N-linked sites present in BcPG6 were determined to be occupied by high-mannose-type oligosaccharides. Four of them were readily determined to be at Asn58 (T3 peptide), Asn198 (T7 peptide), Asn237 (T9 peptide) and Asn256 (T11 peptide), respectively. Another was located on the T8 peptide, which contained two potential N-linked sites, Asn224 and Asn227 (SNNN224VTN227ITFK). LC/MS/MS of a sample treated with N-glycanase placed the glycan in this peptide at Asn224 rather than at Asn227. The potential glycosylation site on Asn146 (T6 peptide) was not glycosylated. In addition, two disulfide bonds were observed, linking the Cys residues within the T13 and T16 peptides.  相似文献   

15.
Neutral and acidic oligosaccharides from human milk were analyzed by matrix-assisted laser desorption/ionization mass spectrometry (MALDI/MS). These experiments require suitable matrices; their selection and particularly their preparation protocols must be optimized. Important criteria are sensitivity, reproducibility, tolerance against impurities and resolution over a wide mass range. For analytical investigations of these oligosaccharides, containing labile fucosylated and sialylated components, another property of a matrix becomes a significant factor, namely the influence on ion stability and the extent of (metastable) fragmentation. The experience gained with the MALDI/MS of neutral and acidic oligosaccharides is summarized taking into account different intentions of measurement and typical problems, such as impurities after enzymatic treatment. For a rapid screening of an oligosaccharide sample, superior results were obtained with a new preparation technique using 5-chloro-2-mercaptobenzothiazole (CMBT) as the first layer for 2,5-dihydroxybenzoic acid. For structural analysis by post-source decay, CMBT as the first layer for 3-aminoquinoline is a favoured preparation protocol, because extensive fragmentation is achieved. For acidic oligosaccharides, a special preparation protocol makes it possible to determine the number of sialic acids by inducing highly effective cationization. Matrix-assisted laser desorption/ionization mass spectrometry; matrices; oligosaccharides; post-source decay.  相似文献   

16.
Electrospray ionization with Fourier transform ion cyclotron resonance mass spectrometry (ESI-FTICRMS) was used for screening and structural elucidation of core oligosaccharides isolated from lipopolysaccharides of bacteria of the genus Proteus. Mass spectra allowed the determination of the molecular masses with high accuracy and the estimation of the chemical heterogeneity of the samples. They did not, however, provide sufficient information to identify structural details of the branched oligosaccharides. Therefore, various fragmentation techniques for determining such details were examined. Infrared multiphoton dissociation tandem mass spectrometry (IRMPD-MS/MS) experiments in negative ion mode resulted in cleavage between the structurally conserved inner core region and the variable outer core region. Positive ion capillary skimmer dissociation mass spectra showed numerous fragment ion peaks, including those corresponding to the subsequent cleavage of the glycosidic linkages starting from the non-reducing end of the oligosaccharide. Despite their complexity, these mass spectrometric studies allowed confirmation of previously determined Proteus lipopolysaccharide core structures, and identification of new related structures in other strains of these bacteria.  相似文献   

17.
Host-guest complexes between nucleobases or nucleosides and beta-cyclodextrin can be observed by electrospray ionization mass spectrometry (ESI-MS) and their relative abundances appear to correlate with the condensed-phase binding order. Using Fourier transform ion cyclotron resonance mass spectrometry, the extent of the interactions between the host oligosaccharide and guest species have also been examined for permethylated beta-cyclodextrin : adenine/deoxyadenosine and permethylated maltoheptaose : adenine/deoxyadenosine using gas-phase exchange reactions with the gaseous amines, n-propylamine and ethylenediamine. The ease of guest exchange in the gas-phase follows the order : deoxyadenosine > adenine > deoxycytidine > cytosine, which is in contrast to their relative binding order in solution. Collision-induced dissociation (CID) has been used to probe the fragmentation behavior of oligosaccharide : nucleobase/nucleoside complexes. Under these conditions the inclusion complexes either (a) dissociate, (b) result in cleavage of the host oligosaccharide or (c) result in cleavage of the guest molecule. This study has shown that the preferred dissociation pathway of these complexes depends on the structures of both the cyclodextrin and guest molecule.  相似文献   

18.
Differentiation of oligosaccharide isomers by mass spectrometry (MS) is a challenging task. For native, permethylated and peracetylated trisaccharides, matrix-assisted laser desorption/ionization time-of-flight (MALDI/TOF) MS and liquid secondary ionization (LSI) MS experiments can produce complementary results that are useful for molecular mass and sugar sequence determination and isomer differentiation. Linear MALDI/TOF-MS analysis of native and derivatized oligosaccharides usually produces cationized molecular ions. Characterization by LSI-MS and tandem mass spectrometry (LSI-MS/MS) typically may yield only low-abundance protonated molecular ions but produces dominant B-type ions by elimination of ROH (R = Me, Ac) from the C-1 position at the reducing end and distinctive sequence-related fragments. Results for four milk trisaccharides, two neutral (fucosyllactoses) and two sialylated (sialyllactoses), are presented to demonstrate the utility of microscale permethylation and gas-to-solid phase peracetylation for high sensitivity structural elucidation. For the pairs of carbohydrates investigated in this study by LSI-MS, LSI-MS/MS and linear MALDI/TOF-MS, the fragmentation patterns of the native, permethylated and peracetylated isomer pairs are shown to differ markedly as a consequence of their limited dissimilarities. In addition, the tendency of sialylated carbohydrates to form lactones upon peracetylation has been exploited to take advantage of the variation in the extent of lactonization with orientation of the sialic acid moiety relative to the adjacent sugar rings. Lactone formation is favored for 3'-sialyllactose compared with its 6'-isomer; Hyperchem was employed to indicate the relative stabilities of the molecular and fragment ions and to visualize the molecules in 3D (rather than to obtain absolute conformational energy values). The relative conformational energies of lactonized and non-lactonized ions were calculated using the Hyperchem software; their values support the trends observed by MS.  相似文献   

19.
Capillary electrophoresis electrospray–mass spectrometry was used to detect and characterize the great variety of O- and N-glycopeptide glycoforms of recombinant human erythropoietin (rhEPO) using an orthogonal accelerating time-of-flight mass spectrometer to obtain their exact molecular masses (CE–TOF-MS). rhEPO was digested with trypsin and Glu-C and analyzed by CE–TOF-MS to detect O126, N83, N24–N38 and N24 and N38 glycopeptide glycoforms, respectively. Neuraminidase was first used to enhance the detection of the glycopeptides and detect all possible glycoforms contained in each glycosylation site. O126 and N83 glycopeptides were extensively characterized. Twelve sialoforms corresponding to 5 different glycoforms were detected in N83, and for the first time, a sulfated sialoform of this glycopeptide was also detected. In the case of O126, different sialoforms with different types of sialic acids (Neu5Gc and Neu5Ac) were detected and an estimation of the relative percentage of Neu5Gc versus Neu5Ac was also carried out for this glycopeptide. N24 and N38 glycosylation sites were also characterized by CE–TOF-MS after Glu-C digestion and these results permitted to rule out some glycan combinations for N24–N38 glycopeptide glycoforms. This study provided a reliable glycopeptide map of rhEPO and may be regarded as an excellent starting point to analyze rhEPO glycopeptides in biological fluids and detect the use of this hormone in sports.  相似文献   

20.
Permethylated oligosaccharides were analyzed by matrix-assisted laser desorption/ionization mass spectrometry (MALDI/MS) using a reflectron time-of-flight instrument in the post-source decay (PSD) mode. Under these ionization conditions, such derivatives yield intense signals corresponding to sodium or potassium cationized molecular species. Fragments observed in the PSD spectra result exclusively from cleavage of glycosidic bonds, preferentially at N-acetylhexosamine residues. A systematic study was carried out on a series of permethylated oligosaccharides to allow rationalization of the fragmentation processes. Fragments originating from both the reducing and the non-reducing ends of the oligosaccharide yield information on sequence and branching. Moreover, glycosyl residues linked in position 3 of HexNAc units give rise to a highly specific elimination process, which allows unambiguous assignment of (1-3) interglycosidic linkages. Special attention was paid to the structural analysis of oligosaccharides carrying the commonly encountered fucosyl and sialyl end-caps. In the case of sialylated residues, a targeted methodology involving desialylation and specific CD3-labeling of the nascent free hydroxyl groups was developed to mark the initial location of sialic acid residues along the oligosaccharide backbone. As accurate mass determination of fragment ions is essential for their assignment, a simplified protocol for the calibration in the PSD mode is described. This procedure allows the determination of the correction function parameters required to process the data for an instrument that employs post-acceleration detection. MALDI/PSD-MS of permethylated oligosaccharides, by providing structural information at the low picomole level, appears to be a valuable complement, or an alternative, to the techniques currently in use for carbohydrate structural analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号