首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The axisymmetric dynamic response of a penny-shaped crack in an elastic conductor under an impulsive electric current flow and a constant axial magnetic field is analyzed. The axial current flow is disturbed by the presence of the crack and the torsional shear stresses are caused by the interactions between the magnetic field and the disturbed current. Laplace and Hankel transforms are used to reduce the electromagnetoelastic problem to a Fredholm integral equation of the second kind in the Laplace transform plane. A numerical Laplace inversion routine is used to recover the time dependence of the solution. Numerical results on the dynamic stress intensity factor are obtained and are presented in a graphical form.  相似文献   

2.
朱伯靖  秦太验 《力学学报》2007,39(4):510-516
应用有限部积分概念和广义位移基本解,垂直于磁压电双材料界面三维复合型裂纹问题被转 化为求解一组以裂纹表面广义位移间断为未知函数的超奇异积分方程问题. 进而,通过主部 分析法精确地求得裂纹尖端光滑点附近的奇性应力场解析表达式. 然后,通过将裂纹表面 位移间断未知函数表达为位移间断基本密度函数与多项式之积,使用有限部积分法对超奇异 积分方程组建立了数值方法. 最后,通过典型算例计算,讨论了广义应力强度因子的变化规 律.  相似文献   

3.
Analytical studies on electromagnetoelastic behaviors are presented for the functionally graded piezoelectric material (FGPM) solid cylinder and sphere placed in a uniform magnetic field and subjected to the external pressure and electric loading. When the mechanical, electric and magnetic properties of the material obey an identical power law in the radial direction, the exact displacements, stresses, electric potentials and perturbations of magnetic field vector in the FGPM solid cylinder and sphere are obtained by using the infinitesimal theory of electromagnetoelasticity. Numerical examples also show the significant influence of material inhomogeneity. It is interesting to note that selecting a specific value of inhomogeneity parameter can optimize the electromagnetoelastic responses, which will be of particular importance in modern engineering designs.  相似文献   

4.
Analytical studies on electromagnetoelastic behaviors are presented for the functionally graded piezoelectric material (FGPM) solid cylinder and sphere placed in a uniform magnetic field and subjected to the external pressure and electric loading. When the mechanical, electric and magnetic properties of the material obey an identical power law in the radial direction, the exact displacements, stresses, electric potentials and perturbations of magnetic field vector in the FGPM solid cylinder and sphere are obtained by using the infinitesimal theory of electromagnetoelasticity. Numerical examples also show the significant influence of material inhomogeneity. It is interesting to note that selecting a specific value of inhomogeneity parameter β can optimize the electromagnetoelastic responses, which will be of particular importance in modern engineering designs. The project supported by China postdoctoral science foundation (20060390260) and Hunan Postdoctoral Scientific Program. The English text was polished by Yunming Chen.  相似文献   

5.
6.
This paper treats a liquid-metal flow inside an electrically insulating cylinder with electrically conducting solids above and below the liquid region. There is a uniform axial magnetic field, and there is an electric current through the liquid and both solids. Since the lower liquid-solid interface is concave into the solid and since the liquid is a better electrical conductor than the adjacent solid, the electric current is locally concentrated near the centerline. The return to a uniform current distribution involves a radial electric current which interacts with the axial magnetic field to drive an azimuthal flow. The axial variation of the centrifugal force due to the azimuthal velocity drives a meridional circulation with radial and axial velocities. This problem models the effects of Peltier marking during the vertical Bridgman growth of semiconductor crystals with an externally applied magnetic field, where the meridional circulation due to the Peltier current may produce important mixing in the molten semiconductor. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

7.
Experimental results concerning the stability of Couette flow of ferrofluids under magnetic field influence are presented. The fluid cell of the Taylor–Couette system is subject to a homogeneous axial magnetic field and the axial flow profiles are measured by ultrasound Doppler velocimetry. It has been found that an axial magnetic field stabilizes the Couette flow. This effect decreases with a rotating outer cylinder. Moreover, it could be observed that lower axial wave numbers are more stable at a higher axial magnetic field strength. Since the used ferrofluid shows a negligible particle–particle interaction, the observed effects are considered to be solely based on the hindrance of free particle rotation.  相似文献   

8.
In this paper, the interactions of multiple parallel symmetric and permeable finite length cracks in a piezoelectric/piezomagnetic material plane subjected to anti-plane shear stress loading are studied by the Schmidt method.The problem is formulated through Fourier transform into dual integral equations, in which the unknown variables are the displacement jumps across the crack surfaces.To solve the dual integral equations, the displacement jumps across the crack surfaces are directly expanded as a series of Jacobi polynomials.Finally, the relation between the electric field, the magnetic flux field and the stress field near the crack tips is obtained.The results show that the stress, the electric displacement and the magnetic flux intensity factors at the crack tips depend on the length and spacing of the cracks.It is also revealed that the crack shielding effect presents in piezoelectric/piezomagnetic materials.  相似文献   

9.
The magnetoelastic plane strain problem of an interfacial Griffith crack between two dissimilar soft ferromagnetic elastic materials subjected to a uniform magnetostatic field is considered within the framework of linear magnetoelasticity. By making use of the Fourier integral transform technique, the mixed boundary problem is then reduced to a pair of singular integral equations of the second kind. Solutions of the singular integral equations are obtained numerically by means of a Jacobi polynomial expansion method. Effects of the magnetic field, the combinations of the magnetic properties of materials and the geometric parameters on the magnetoelastic stress intensity factors in the vicinity of crack tip are shown graphically.  相似文献   

10.
Magnetohydrodynamic (MHD) flow of a viscous electrically conducting incompressible fluid between two stationary impermeable disks is considered. A homogeneous electric current density vector normal to the surface is specified on the upper disk, and the lower disk is nonconducting. The exact von Karman solution of the complete system of MHD equations is studied in which the axial velocity and the magnetic field depend only on the axial coordinate. The problem contains two dimensionless parameters: the electric current density on the upper plate Y and the Batchelor number (magnetic Prandtl number). It is assumed that there is no external source that produces an axial magnetic field. The problem is solved for a Batchelor number of 0–2. Fluid flow is caused by the electric current. It is shown that for small values of Y, the fluid velocity vector has only axial and radial components. The velocity of motion increases with increasing Y, and at a critical value of Y, there is a bifurcation of the new steady flow regime with fluid rotation, while the flow without rotation becomes unstable. A feature of the obtained new exact solution is the absence of an axial magnetic field necessary for the occurrence of an azimuthal component of the ponderomotive force, as is the case in the MHD dynamo. A new mechanism for the bifurcation of rotation in MHD flow is found.  相似文献   

11.
The peristaltic flow of a Johnson-Segalman fluid in a planar channel is investigated in an induced magnetic field with the slip condition.The symmetric nature of the flow in a channel is utilized.The velocity slip condition in terms of shear stresses is considered.The mathematical formulation is presented,and the equations are solved under long wavelength and low Reynolds number approximations.The perturbation solutions are established for the pressure,the axial velocity,the micro-rotation component,the stream function,the magnetic-force function,the axial induced magnetic field,and the current distribution across the channel.The solution expressions for small Weissenberg numbers are derived.The flow quantities of interest are sketched and analyzed.  相似文献   

12.
The non-Newtonian blood flow, together with magnetic particles in a stenosed artery, is studied using a magneto-hydrodynamic approach. The wall slip condition is also considered. Approximate solutions are obtained in series forms under the assumption that the Womersley frequency parameter has small values. Using an integral transform method, analytical solutions for any values of the Womersley parameter are obtained.Numerical simulations are performed using MATHCAD to study the influence of stenosis and magnetic field on the flow parameters. When entering the stenosed area, blood velocity increases slightly, but increases considerably and reaches its maximum value in the stenosis throat. It is concluded that the magnitude of axial velocity varies considerably when the applied magnetic field is strong. The magnitude of maximum fluid velocity is high in the case of weak magnetic fields. This is due to the Lorentz's force that opposes motion of an electrically conducting fluid. The effect of externally transverse magnetic field is to decelerate the flow of blood. The shear stress consistently decreases in the presence of a magnetic field with increasing intensity.  相似文献   

13.
在有限元模态分析的基础上,提取了含人工径向裂纹的周界固定薄圆板各单元的相关参数,并将瑞利积分离散化后进而计算了裂纹圆板辐射声场的轴向声压分布和r=0.5m球面上声场指向性。结果表明,径向裂纹不仅使模态裂解为关于裂纹的对称模态和反对称模态,而且使声场分布有显著的变化。通过完整圆板辐射声场计算验证了本文提出方法的正确性。可用于求解任意形状穿透裂纹薄圆板辐射声场的计算。  相似文献   

14.
The solution of a 3-D rectangular permeable crack in a piezoelectric/piezomagnetic composite material was investigated by using the generalized Almansi’s theorem and the Schmidt method.The problem was formulated through Fourier transform into three pairs of dual integral equations,in which the unknown variables are the displacement jumps across the crack surfaces.To solve the dual integral equations,the displacement jumps across the crack surfaces were directly expanded as a series of Jacobi polynomials.Finally,the relations between the electric filed,the magnetic flux field and the stress field near the crack edges were obtained and the efects of the shape of the rectangular crack on the stress,the electric displacement and magnetic flux intensity factors in a piezoelectric/piezomagnetic composite material were analyzed.  相似文献   

15.
Fracture of a rectangular piezoelectromagnetic body   总被引:5,自引:0,他引:5  
The singular stress, electric fields and magnetic fields in a rectangular piezoelectromagnetic body containing a center Griffith crack under longitudinal shear are obtained. Fourier transforms and Fourier sine series are used to reduce the mixed boundary value problems of the crack, which is assumed to be impermeable, to dual integral equations. The solution of the dual integral equations is then expressed in terms of Fredholm integral equations of the second kind. Expressions for stresses, electric displacements and magnetic inductions in the vicinity of the crack tip are derived. Also obtained are the field intensity factors and the energy release rates. Numerical results obtained show that the geometry of the rectangular body have significant influence on the field intensity factors and the energy release rates.  相似文献   

16.
We investigate the magnetohydrodynamic flow (MHD) on the upper, half of a non-conducting plane for the case when the flow is driven by the current produced by an electrode placed in the middle of the plane. The applied magnetic field is perpendicular to the plane, the flow is laminar, uniform, steady and incompressible. An analytical solution has been developed for the velocity field and the induced magnetic field by reducing the problem to the solution of a Fredholm's integral equation of the second kind, which has been solved numerically. Infinite integrals occurring in the kernel of the integral equation and in the velocity and magnetic field were approximated for large Hartmann numbers by using Bessel functions. As the Hartmann number M increases, boundary layers are formed near the non-conducting boundaries and a parabolic boundary layer is developed in the interface region. Some graphs are given to show examples of this behaviour.  相似文献   

17.
软铁磁材料平面裂纹问题的耦合场   总被引:5,自引:1,他引:4  
梁伟  方岱宁  沈亚鹏 《力学学报》2001,33(6):758-767
由磁弹性问题的线性化理论导出磁场下平面软铁磁体问题的控制方程和复势解。利用复势解和奇异积分方程方法,对面内磁场和远场载荷作用下的含裂纹无限大软铁磁平面问题进行了求解,得到耦合场的解。并对不同磁力模型的结果和磁场与机械载荷共同作用下的裂尖应力强度因子进行了讨论。  相似文献   

18.
This paper is concerned with the fracture of a fiber embedded in a matrix of finite radius. There is a periodic array of cracks in the fiber along the central axis of the medium. The paper accounts for the cases of axial extension and residual temperature change of the composite medium. Fourier and Hankel transforms are used to reduce the problem to the solution of a system of dual integral equations, which are solved by the singular integral equation technique. Rigorous fracture mechanics analysis, which exactly satisfies all boundary conditions of the problem, is conducted. Numerical solutions for the crack tip field and the stress in the fiber are obtained for various values such as crack radius, crack spacing and fiber volume fraction.  相似文献   

19.
The plane electromagnetoelastic problem for an infinite plate with cracks and holes for known electrical potentials at the boundaries of the cracks and holes is solved using generalized complex potentials and conformal mapping, series, and least squares methods. The electromagnetoelastic state and variation of the stress intensity coefficient versus the geometric and physicomechanical properties of the material was studied for plates with two circular holes, a crack and a circular hole, or two cracks.  相似文献   

20.
This paper deals with the scattering of time harmonic flexural waves by a through crack in a magnetically saturated plate under a uniform magnetic field normal to the plate surfaces. The analysis is based on Mindlin's plate theory of magneto-elastic interactions under a magnetic field. An incident wave giving rise to moments symmetric about the crack plane is applied. Fourier transforms are used to reduce the mixed boundary value problem to one involving the numerical solution of a Fredholm integral equation. The dynamic moment intensity factor versus frequency is computed and the influence of the magnetic field on the normalized values is displayed graphically.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号