首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A passively Q-switched diode pumped Yb:YAG microchip laser   总被引:3,自引:0,他引:3  
A passively Q-switched diode pumped Yb:YAG microchip laser with Cr4+:YAG saturable absorber mirror is reported. The TEMoo laser pulses are obtained with 1,7-uJ pulse energy, 15-ns pulse width, 0.11-kW peak power, and a repetition rate of 2.2 kHz at 1049 nm. The doped concentration and dimension of Yb:YAG microchip crystal are 10 at.-% and 5×0.6 mm2, respectively.  相似文献   

2.
We demonstrate a high-pulse-energy, short-pulse-width passively Q-switched(PQS) Nd:YAG∕V3t:YAG laser at 1.3 μm, which is end-pumped by a pulsed laser diode. During the PQS regime, a maximum total output pulse energy of 3.3 m J is obtained under an absorbed pump pulse energy of 21.9 m J. Up to 400 μJ single-pulse energy is realized with the shortest pulse width of 6.16 ns and a pulse repetition frequency of 34.1 k Hz,corresponding to a peak power of 64.9 k W. The high-energy laser pulse is operated in the dual wavelengths of 1319 and 1338 nm, which is a potential laser source for THz generation.  相似文献   

3.
A pre-pumped passively Q-switched Nd:YAG/Cr: YAG microchip laser is demonstrated with a peak power of 7.5 kW at pulse repetition rate of serveral kilohertzs. The full-width at half-maximum (FWHM) is 734 ps, and the pulse energy is 5.5 μJ with a fundamental spatial mode. In this system, the pre-pumped microchip laser of Nd: YAG/Cr: YAG wafer which is bonded through the thermal-bonding technique has achieved a time jitter value of 12 μs and a Q-switched amplitude instability of 1.26% (1δ) through the pre-pumped modulation technique.  相似文献   

4.
J. W. Liu  C. Q. Gao  L. Wang  L. Zou  J. Z. Li 《Laser Physics》2010,20(10):1886-1889
A method of generating 1.57 μm pulse-series eye-safe laser based on optical parametric oscillator (OPO) was developed. The 1.57 μm pulse-series OPO was pumped by a Q-switched Nd:YAG laser with a variable reflectivity unstable resonator. Every pulse-series includes three micro-pulses, and the pulse repetition rates, pulse numbers and pulse intervals were adjustable. The maximum output energy of the 3-micro-pulse-series was 274 mJ. The optical-optical efficiency of the OPO was about 40%.  相似文献   

5.
Stable mode-locking in an Yb:YAG laser with a fast SESAM   总被引:4,自引:0,他引:4  
Stable mode-locking in a diode-pumped Yb:YAG laser was obtained with a very fast semiconductor sat-urable absorber mirror (SESAM). The pulse width was measured to be 4 ps at the central wavelength of 1047 nm. The average power was 200 mW and the repetition rate was 200 MHz.  相似文献   

6.
Diode pumped, injection seeded single-longitudinal-mode (SLM) Nd:YAG laser is achieved through buildup time minimizing technique in Q-switching operation. Pulses with energy of 20 mJ are obtained at a repetition rate of 100 Hz. Mx2 and My2 are 1.41 and 1.38, respectively.  相似文献   

7.
A passively Q-switched 1.06???m Nd:GdVO4 laser with a [100]-cut Cr4+:YAG saturable absorber was demonstrated. The output characteristics were investigated when the anisotropic transmission of Cr4+:YAG crystal and the incident pump power level were considered. The experimental results showed that it was feasible to generate laser with narrower pulse width (?? p ), higher pulse energy and peak power when the polarization direction of laser was parallel to the [001], [010], [ $00\overline{1}$ ], and [ $0\overline{1}0$ ] orientations of the Cr4+:YAG crystal. The different changes of ?? p as a function of incident pump power was observed due to the anisotropy of transmission of Cr4+:YAG and the different gain levels (pump power levels). If the Cr4+:YAG was fully bleached as a result of high cavity gain or due to the laser polarization direction was parallel to the [001], [010], [ $00\overline{1}$ ], and [ $0\overline{1}0$ ] orientations, ?? p was constant, otherwise ?? p decreased when the gain increased.  相似文献   

8.
Ma  J.  Li  Y.  Sun  Y.  Hou  X. 《Laser Physics》2008,18(4):393-395
By using a new saturable absorber V3+:YAG, a flash-lamp-pumped passively Q-switched Nd:YAG laser at 1.32 μm has been realized. The single-pulse energy and the pulse width of the output laser versus the pump energy are measured. With a cavity length of 440 mm and a pump energy of 43.4 J, the obtained single-pulse output energy and pulse width are 10 mJ and 86.9 ns, respectively, corresponding to a peak power of 115 kW.  相似文献   

9.
We demonstrated a diode-pumped passively Q-switched mode-locked Nd:YVO4 laser by using a relaxed saturable Bragg reflector (SBR). Stable mode-locked pulse train with the repetition rate of -230 MHz was achieved and the pulse train was modulated by the Q-switched envelope with the repetition rate of -150 kHz. The maximum output of 4 W was obtained under the pump power of 13.5 W. The optical-to-optical efficiency was 30%. We also discussed the transition of each process having emerged.  相似文献   

10.
A lamp pumped CW Nd:YAG laser is presented in this paper for the requirement of industrial application. The main factors, which affect output power and beam quality of high power solid-state laser module, are theoretically analyzed. Total electro-optics efficiency of lamp pumped Nd:YAG crystal as high as 4.0% is obtained, and output power is higher than 647 W with beam parameter product 22 mm·mrad.  相似文献   

11.
Liu  J.  Ozygus  B.  Erhard  J.  Ding  A.  Weber  H.  Meng  X. 《Optical and Quantum Electronics》2003,35(8):811-824
A diode-pumped 1.34 m Nd:GdVO4 laser operating in cw and active Q-switching modes has been demonstrated. 4.15 W of cw output power was obtained at the highest attainable pump power of 12.3 W, resulting in an optical conversion efficiency of 33.7%, the slope efficiency was determined to be 37.6%. In Q-switching operation, a maximum average output power of 2.7 W was generated at pulse repetition frequency (PRF) of 50 kHz, with an optical conversion efficiency of 22% and a slope efficiency of 29.2%. The laser pulses with shortest duration, highest energy and peak power were achieved at PRF of 10 kHz, the parameters being 15 ns, 160 J, and 10.7 kW, respectively. By intracavity frequency-doubling with a type II phased-matched KTP crystal, 0.62 W average power at 0.67 m was produced at a PRF of 15 kHz, the resulting pulse energy, peak power, and pulse width being 41.3 J, 2.2 kW, and 19 ns, respectively. A group of analytical formulae, based on rate equations, are presented to evaluate the operational parameters of an actively Q-switched laser. Calculated results were found to be in close consistency with the experimental data.  相似文献   

12.
The phenomena of simultaneous Q-switching and mode-locking in a diode-pumped Nd:YVO4/Cr:YAG/ KTP green laser are reported and discussed in this paper. With 5.3-W pump power, by using a nearly hemispherical cavity (the cavity length is only 97 mm), the results of modulation depth of 70% and the period of 0.6 ns are obtained, the output power and the repetitive frequency of Q-switched pulse are 90 mW and 12 kHz, respectively.  相似文献   

13.
A high-repetition-rate eye-safe optical parametric oscillator (OPO), using a non-critically phase-matched KTP crystal intracavity pumped by a passively Q-switched Nd:GdVO4/Cr^4+ :YAG laser, is experimentally demonstrated. The conversion efficiency for the average power is 7% from pump diode input to OPO signal output and the slope efficiency is up to 10.3%. With an incident pump power of 7,3 W, the compact intracavity OPO (IOPO) cavity, operating at 15 kHz, produces an average power of 0.57 W at 1570 nm with a pulse width as short as 6 ns. The peak power at 1570 nm is higher than 6.3 kW.  相似文献   

14.
A passively Q-switched operation of a diode-pumped Nd.YVO_4 laser is demonstrated, in which a GaAsfilm is used as the saturable absorber as well as the output coupler. At the pump power of 10 W, a stablefundamental-mode average power output of 2.11 W was obtained with a pulse duration of 140 ns, pulseenergy of 76 μJ and pulse repetition rate of 28 kHz. A theoretical analysis that describes the passiveQ-switching dynamics of GaAs is presented.  相似文献   

15.
We demonstrate a high-peak-power quasi-continuous-wave diode-pumped passive Q-switched Nd:YAG laser at 946 nm. We make a thorough comparison of the output performance between the saturable absorbers of InGaAs quantum wells (QWs) and a Cr4+:YAG crystal. Experimental results reveal that the saturable absorber of InGaAs QWs is superior to the Cr4+:YAG crystal because of the low nonsaturable losses and leads to a pulse energy of 330 μJ with a peak power greater than 11 kW.  相似文献   

16.
17.
HighpowerNd:YAGslablasersidepumpedbydiodelaserarrayCHENYouming;ZHOUFuzheng;HUWentao;LIZhishen;YANGXiangchun;WangZhijiang(Shan...  相似文献   

18.
The intracavity photon density is assumed to be of Gaussian spatial distributions and its longitudinal variation is also considered in the rate equations for a laser diode (LD) end-pumped passively Q-switched Nd:YVO4 laser with GaAs saturable absorber. These space-dependent rate equations are solved numerically. The dependences of pulse width, pulse repetition rate, single-pulse energy, and peak power on incident pump power are obtained. In the experiment, the LD end-pumped passively Q-switched Nd:YVO4 laser with GaAs saturable absorber is realized and the experimental results are consistent with the numerical solutions.  相似文献   

19.
We demonstrated an Fe:ZnSe laser pumped by a 2.93-μm Cr, Er:YAG laser at liquid nitrogen and room temperature in single-shot free-running operation for the first time. The xenon flash lamp pumped Cr, Er:YAG laser had a maximum single pulse energy of 1.414 J, and the threshold and slope efficiency were 141.70 J and 0.70% which were respectively reduced by 29.3% and increased by 52.2% compared with the Er:YAG laser. At liquid nitrogen temperature of 77 K, the maximum single pulse energy of the Fe:ZnSe laser was 197.6 m J, corresponding to a slope efficiency of 13.4%. The central wavelength and full width at half maximum(FWHM) linewidth were 4037.4 nm and 122.0 nm, respectively. At room temperature, the laser generated a maximum single pulse energy of 3.5 mJ at the central wavelength of 4509.6 nm with an FWHM linewidth of 171.5 nm.  相似文献   

20.
A diode-pumped passively Q-switched Nd:YLF laser was demonstrated by using saturable absorber of Cr4 :YAG. At the incident power of 7.74 W, pure passively Q-switched laser with per pulse energy of 210μJ and pulse width of 19.6 ns at repetition rate of 1.78 kHz was obtained by using Cr4 :YAG with initial transmission of 80%. At the incident power of 8.70 W, a Q-switched mode-locking with average output power of 650 mW was achieved, the overall slop efficiency was 16%, corresponding to the initial transmission of 85% of Cr4 :YAG.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号