首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
An investigation was carried out to find whether enhanced levels of UV-B radiation induce increased concentrations of flavonoids in the leaves of the grass species Deschampsia antarctica, Deschampsia borealis and Calamagrostis epigeios and the sedge Carex arenaria. Whether the enhanced levels of UV-B influenced the proportions of the various flavonoids in the leaves was also studied. Increased flavonoid concentrations would improve the UV-B shielding of UV-B susceptible tissues. Using HPLC analysis the flavonoids orientin and luteolin were identified in D. antarctica, orientin in D. borealis and tricin in C. arenaria. Neither flavonoid concentrations nor the proportion of the various flavonoids in climate room grown D. antarctica and D. borealis plants differed between individuals grown under 0, ambient or elevated UV-B levels. After 12 weeks of growth biomass production and shoot-to-root ratios of D. antarctica were not affected by elevated UV-B radiation. Greenhouse grown C. epigeios plants contained higher concentrations and different proportions of flavonoids grown under elevated levels of UV-B than when grown under ambient or 0 UV-B. In C. epigeios plants grown in their natural habitat in the field under ambient or elevated levels of UV-B, flavonoid concentrations and proportions were the same in plants from both treatments. In the leaves of the sedge C. arenaria grown in a greenhouse flavonoid concentrations and proportions were not affected by UV-B radiation. Leaves were harvested four times during the growing season from C. arenaria plants grown in their natural habitat in the field under ambient or elevated levels of UV-B. Leaves harvested in January contained higher concentrations of flavonoids when grown under elevated UV-B than when grown under ambient UV-B radiation. In leaves harvested in May, September and December flavonoid concentrations were the same in plants grown under ambient or elevated UV-B. The proportion of the different flavonoids was the same for both treatments in all months. These results indicate that constitutive levels of flavonoids in these grass and sedge species are adequately high to protect them against ambient and elevated levels of solar UV-B radiation.  相似文献   

2.
Chlorophyll fluorescence (ChlF) excitation spectra were measured to assess the UV-sunscreen compounds accumulated in fully expanded leaves of three woody species belonging to different chemotaxons, (i.e. Morus nigra L., Prunus mahaleb L. and Lagerstroemia indica L.), grown in different light microclimates. The logarithm of the ratio of ChlF excitation spectra (logFER) between two leaves acclimated to different light microclimates was used to assess the difference in epidermal absorbance (EAbs). EAbs increased with increasing solar irradiance intercepted for the three species. This epidermal localisation of UV-absorbers was confirmed by the removal of the epidermis. It was possible to simulate EAbs as a linear combination of major phenolic compounds (Phen) identified in leaf methanol extracts by HPLC-DAD. Under UV-free radiation conditions, shaded leaves of M. nigra accumulated chlorogenic acid. Hydroxybenzoic acid (HBA) derivatives and hydroxycinnamic acid (HCA) derivatives greatly increased with increasing PAR irradiance under the low UV-B conditions found in the greenhouse. These traits were also observed for the HCA of the two other species. Flavonoid (FLAV) accumulation started under low UV-A irradiance, and became maximal in the adaxial epidermis of sun-exposed leaves outdoors. A decrease in the amount of HCA was observed concomitantly to the intense accumulation of FLAV for both leaf sides of the three species. Judging from the logFER, under low UV-B conditions, larger amounts of HCA are present in the epidermis in comparison to FLAV for the three species. Upon transition from the greenhouse to full sunlight outdoors, there was a decrease in leaf-soluble HCA that paralleled FLAV accumulation in reaction to increasing solar UV-B radiation in the three species. In M. nigra, that contains large amounts of HCA, the logFER analysis showed that this decrease occurred in the adaxial epidermis, whereas the abaxial epidermis, which is protected from direct UV-B radiation, continued to accumulate large amounts of HCA.  相似文献   

3.
Cyanobacteria must cope with the negative effects of ultraviolet B (280-315 nm) (UV-B) stress caused by their obligatory light requirement for photosynthesis. The adaptation of the cyanobacterium Anabaena sp. to moderate UV-B radiation has been observed after 2 weeks of irradiation, as indicated by decreased oxidative stress, decreased damage, recovered photosynthetic efficiency and increased survival. Oxidative stress in the form of UV-B-induced production of reactive oxygen species was measured in vivo with the oxidative stress-sensitive probe 2',7'-dichlorodihydrofluorescein diacetate. Photooxidative damage by UV-B radiation, including lipid peroxidation and DNA strand breakage, was determined by a modified method using thiobarbituric acid reactive substances and fluorometric analysis of DNA unwinding. Photosynthetic quantum yield was determined by pulse amplitude-modulated fluorometry. The results suggest that moderate UV-B radiation results in an evident oxidative stress, enhanced lipid peroxidation, increased DNA strand breaks, elevated chlorophyll bleaching as well as decreased photosynthetic efficiency and survival during the initial exposure. However, DNA strand breaks, photosynthetic parameters and chlorophyll bleaching returned to their unirradiated levels after 4-7 days of irradiation. Oxidative stress and lipid peroxidation appeared to respond later because decreases were observed after 7 days of radiation. The survival curve against irradiation time exhibited a close relationship with the changes in photosynthetic quantum yield and DNA damage, with little mortality after 4 days. Growth inhibition by UV-B radiation was observed during the first 7 days of radiation, whereas normal growth resumed even under UV-B stress thereafter. An efficient defense system was assumed to come into play to repair photosynthetic and DNA damage and induce the de novo synthesis of UV-sensitive proteins and lipids, allowing the organisms to adapt to UV-B stress successfully and survive as well as grow. No induction of mycosporine-like amino acids (MAA) was observed during the adaptation of Anabaena sp. to UV-B stress in our work. The adaptation of the cyanobacterium correlated with and could be caused by the oxidative stress and oxidative damage.  相似文献   

4.
Abstract— Visible radiation can substantially influence the degree to which plant photosynthesis is inhibited by UV-B radiation. This study was designed to separate the immediate effects of visible radiation on UV-B photosynthetic inhibition from the indirect influence of visible irradiation on morphological and physiological properties of leaves during leaf development. Soybean plants were pretreated in growth chambers with either high or low visible irradiance (750 and 70 μmol m-2s-1 quantum flux in the 400–700 nm waveband, respectively) during the development of leaves used subsequently for UV irradiation. Test leaves still attached to the plant were exposed to 5 h of polychromatic UV-B irradiation and the photosynthetic capacity (net CO2 exchange) was determined before and after the UV irradiation. During the UV irradiation, plants from both pretreatment groups received either high or low visible flux. Development of leaves in the high visible flux pretreatment conditions resulted in thicker leaves, higher chlorophyll a/b ratios, more UV-absorbing pigments, and reduced sensitivity to the UV-B irradiation. However, higher visible flux during the UV-B irradiation resulted in greater depression of photosynthesis by the UV-B irradiation. The relative magnitude of photosynthetic depression under these treatment combinations was the same when photosynthesis was measured under either light-limited or light-saturated conditions.  相似文献   

5.
UV-B EFFECTS ON TERRESTRIAL PLANTS   总被引:15,自引:0,他引:15  
The potential impacts of an increase in solar UV-B radiation reaching the Earth's surface due to stratospheric ozone depletion have been investigated by several research groups during the last 15 years. Much of this research has centered on the effects of plant growth and physiology under artificial UV-B irradiation supplied to plants in growth chambers or greenhouses. Since these artificial sources do not precisely match the solar spectrum and due to the wavelength dependency of photobiol-ogical processes, weighting functions, based on action spectra for specific responses, have been developed to assess the biological effectiveness of the irradiation sources and of predicted ozone depletion. Recent experiments have also utilized artificially produced ozone cuvettes to filter natural solar radiation and simulate an environment of reduced UV-B for comparative purposes. Overall, the effectiveness of UV-B varies both among species and among cultivars of a given species. Sensitive plants often exhibit reduced growth (plant height, dry weight, leaf area, etc.), photosynthetic activity and flowering. Competitive interactions may also be altered indirectly by differential growth responses. Photosynthetic activity may be reduced by direct effects on photosynthetic enzymes, metabolic pathways or indirectly through effects on photosynthetic pigments or stomatal function. The fluence response of these changes has yet to be clearly demonstrated in most cases. Plants sensitive to UV-B may also respond by accumulating UV-absorbing compounds in their outer tissue layers, which presumably protect sensitive targets from UV damage. Several key enzymes in the biosynthetic pathways of these compounds have been shown to be specifically induced by UV-B irradiation. Few studies have documented the effects of UV-B on total plant yield under field conditions. One notable exception is a 6-yr study with soybean demonstrating harvestable yield reductions under a simulated 25% ozone depletion. These effects are further modified by prevailing microclimatic conditions. Plants tend to be less sensitive to UV-B radiation under drought or mineral deficiency, while sensitivity increases under low levels of visible light. Further studies are needed to understand the mechanisms of UV-B effects and the interactions with present stresses and future projected changes in the environment.  相似文献   

6.
The effect of enhanced UV-B radiation on buckwheat (Fagopyrum esculentum Moench. variety 'Darja'), an important high elevation crop, was studied in order to estimate its vulnerability in changing UV-B environment. Plants were grown in outdoor experiments from July to October under reduced and ambient UV-B levels, and an UV-B level simulating 17% ozone depletion in Ljubljana. During the development the following parameters were monitored: light saturated photosynthetic activity, transpiration, potential and effective photochemical efficiencies of photosystem II, the contents of photosynthetic pigments and methanol soluble UV-B absorbing compounds. At the end of the experiment, growth rate and production of seeds were estimated. In the following growth season the seeds collected from plants exposed to different UV-B treatments were tested for germination capacity. Total UV-B absorbing compounds during plant development were increased by UV-B radiation, photosynthetic pigments (chlorophyll a and b and carotenoids) decreased. Photosynthetic rate was lowered in an early stage of development. UV-B treatment resulted in the increase in the transpiration rate and consequently the decrease in water use efficiency (WUE). The disturbances in water economy and in photosynthesis affected the reproduction potential negatively; the production of seeds in plants cultivated under ambient and enhanced UV-B was 57 and 39% of the production of specimens treated with reduced UV-B, respectively. The germination of seeds collected from treated plants revealed on average about 95% success, independently of the treatment, but the time needed for germination was the shortest for seeds developed under enhanced UV-B level treatment. Enhanced UV-B radiation affected water relations and production of buckwheat, but not the potential of seeds for germination.  相似文献   

7.
Abstract— Twelve flow-through estuarine microcosms were exposed daily to four different levels of UV-B radiation (290–320. nm)(1.57 ± 102, 6.43 ± 103, 6.86 ± 103 and 7.61 ± 103 J·m-2d−1) in addition to a natural level of visible solar radiation (380-800. nm). The parameters studied over a four week period were phytoplankton community composition, plankton biomass (ash-free dry weight), chlorophyll a concentration and primary productivity (radiocarbon uptake). With increased exposure to UV-B radiation there was an obvious alteration of the community composition. Daily exposure to enhanced levels of UV-B radiation also depressed the biomass, the chlorophyll a concentration and the radiocarbon uptake of samples from the ecosystems.  相似文献   

8.
The effects of supplemental UV-B radiation on Taxus chinensis var. mairei were studied. Leaf traits, gas exchange parameters and the concentrations of photosynthetic pigments, cellular defense system products, secondary metabolites and ultrastructure were determined. UV-B radiation significantly decreased leaf area (p < 0.05). Leaf number, secondary branch number, leaf weight per plant and leaf moisture all increased dramatically (p < 0.05). Neither the leaf weight nor the specific leaf weight (SLW) exhibited significant differences between ambient and enhanced UV-B radiation. Gas exchange parameters were all dramatically reduced by enhanced UV-B radiation (p < 0.05). The contents of chlorophyll and the chlorophyll a/b ratio were not distinctly affected by UV-B radiation, while carotenoids content significantly decreased (p < 0.05). Supplemental UV-B treatment induced significant flavonoid accumulation (p < 0.05), which was able to protect plant from radiation damage. Meanwhile, the appendage content, abaxial stomatal density, papilla density and particulate matter content in substomatic chambers increased noticeably by supplemental UV-B radiation, whereas the aperture size of single stomata was diminished. The number and area of plastoglobuli were apparently reduced by UV-B radiation, but stroma and grana lamellae were not destroyed. Our results demonstrated that T. chinensis var. mairei can activate several defense mechanisms against oxidative stress injury caused by supplemental UV-B radiation.  相似文献   

9.
The effects of UV-B radiation on photosynthesis, growth and cannabinoid production of two greenhouse-grown C. sativa chemotypes (drug and fiber) were assessed. Terminal meristems of vegetative and reproductive tissues were irradiated for 40 days at a daily dose of 0, 6.7 or 13.4 kJ m-2 biologically effective UV-B radiation. Infrared gas analysis was used to measure the physiological response of mature leaves, whereas gas-liquid chromatography was used to determine the concentration of cannabinoids in leaf and floral tissue.
There were no significant physiological or morphological differences among UV-B treatments in either drug- or fiber-type plants. The concentration of Δ9-tetrahydrocannabinol (Δ9-THC), but not of other cannabinoids, in both leaf and floral tissues increased with UV-B dose in drug-type plants. None of the cannabinoids in fiber-type plants were affected by UV-B radiation.
The increased levels of Δ9-THC in leaves after irradiation may account for the physiological and morphological tolerance to UV-B radiation in the drug-type plants. However, fiber plants showed no comparable change in the level of cannabidiol (a cannabinoid with UV-B absorptive characteristics similar to Δ9 THC). Thus the contribution of cannabinoids as selective UV-B filters in C. sativa is equivocal.  相似文献   

10.
Ground-level UV-B radiation has increased globally due to a thinning stratospheric ozone layer. We estimated the effects of increased UV-B on 10 conifer species grown in chambers in greenhouses with supplemental UV-B. Species were selected from a wide range of geographic locations. Plant material of two ages (germinants, first growing season; seedlings, second season) were exposed to three levels of UV-B from ambient (at Victoria, B.C., Canada) to three times ambient (12 kJ m(-2) d(-1)) for up to four months. Frost hardiness and heat tolerance of shoots were estimated from changes in chlorophyll fluorescence after exposure to test temperatures. There were no significant differences among seed sources from different elevations in their response to temperature stresses. When UV-B increased above the ambient level, three species (interior Douglas-fir, Engelmann spruce, and interior lodgepole pine) increased in frost hardiness and four (grand fir, interior spruce, yellow-cedar, and western redcedar) decreased. Two species (western redcedar and western hemlock) increased in heat tolerance when UV-B increased to the 12 kJ level. The main differences in stress tolerance were between the triple ambient and the other two treatments, not between ambient and double ambient, suggesting that any changes in UV-B would have to be large to elicit physiological changes in conifer seedlings.  相似文献   

11.
Ultraviolet-B (UV-B; 280-320 nm)-emitting lamps unavoidably emit ultraviolet-A (UV-A; 320-400 nm) and ultraviolet-C (UV-C; <280 nm) radiation. Short-wavelength-blocking filters are generally used to limit the wave bands of UV under investigation. The widespread use of such filters means that all exposures to UV-B radiation will have a significant UV-A component. Therefore, the physiological effects unique to UV-B exposure are difficult to clearly isolate. This study presents a method to remove the UV-A and UV-C "contamination" using a liquid potassium chromate (K(2)CrO(4)) filter, thus allowing more direct assessment of the effects of UV-B exposure. Cultures of the green marine alga Dunaliella tertiolecta were grown in the absence of UV radiation. Sunlamps supplied the UV radiation for a 24 h exposure (solar radiation was not used in this study). The UV radiation was filtered either by the standard method (i.e. cellulose acetate (CA) with polyester = Mylar controls) or by a liquid filter of potassium chromate. Photosynthetic responses were compared. Major decreases in the ratio of variable to maximal fluorescence in dark-adapted cells and photosynthetic capacity were observed in CA-filtered cultures, whereas no change was observed in cells exposed to the same UV-B flux with the UV-A removed by K(2)CrO(4). The use of a CA filter with a Mylar control does not link results unequivocally to UV-B radiation. Such results should be interpreted with caution.  相似文献   

12.
Current conditions of 2-11 kJ m(-2) day(-1) of UV-B radiation and temperatures of >30 degrees C during flowering in cotton cultivated regions are projected to increase in the future. A controlled environment study was conducted in sunlit growth chambers to determine the effects of UV-B radiation and temperature on physiology, growth, development and leaf hyperspectral reflectance of cotton. Plants were grown in the growth chambers at three day/night temperatures (24/16 degrees C, 30/22 degrees C and 36/28 degrees C) and three levels of UV-B radiation (0, 7 and 14 kJ m(-2) day(-1)) at each temperature from emergence to 79 days under optimum nutrient and water conditions. Increases in main stem node number and the node of first fruiting branch and decrease in duration to first flower bud (square) and flower were recorded with increase in temperature. Main effects of temperature and UV-B radiation were significant for net photosynthetic rates, stomatal conductance, total chlorophyll and carotenoid concentrations of uppermost, fully expanded leaves during squaring and flowering. A significant interaction between temperature and UV-B radiation was detected for total biomass and its components. The UV-B radiation of 7 kJ m(-2) day(-1) reduced boll yield by 68% and 97% at 30/22 degrees C and 36/28 degrees C, respectively, compared with yield at 0 kJ m(-2) day(-1) and 30/22 degrees C. No bolls were produced in the three temperature treatments under 14 kJ m(-2) day(-1) UV-B radiation. The first-order interactions between temperature, UV-B radiation and leaf age were significant for leaf reflectance. This study suggests a growth- and process-related temperature dependence of sensitivity to UV-B radiation.  相似文献   

13.
UV-B radiation (280-320 nm) is harmful to living organisms and has detrimental effects on plant growth, development and physiology. In this work we examined some mechanisms involved in plant responses to UV-B radiation. Seedlings of quinoa (Chenopodium quinoa Willd.) were exposed to variable numbers of UV-B radiation doses, and the effect on cotyledons was studied. We analyzed (1) cotyledons anatomy and chloroplasts ultrastructure; (2) peroxidase activity involved in the lignification processes; and (3) content of photosynthetic pigments, phenolic compounds and carbohydrates. Exposure to two UV-B doses induced an increase in the wall thickness of epidermal cells, which was associated with lignin deposition and higher activity of the peroxidase. The chloroplast ultrastructure showed an appearance typical of plants under shade conditions, likely in response to reduced light penetration into the mesophyll cells due to the screening effect of epidermal lignin deposition. Exposure to UV-B radiation also led to (1) enhancement in the level of phenolics, which may serve a protective function; (2) strong increase in the fructose content, a fact that might be related to higher requirement of erythrose-4P as a substrate for the synthesis of lignin and phenolics; and (3) reduction in the chlorophyll concentration, evidencing alteration in the photosynthetic system. We propose that the observed lignin deposition in epidermal tissues of quinoa is a resistance mechanism against UV-B radiation, which allows growing of this species in Andean highlands.  相似文献   

14.
The potential of ketocarotenoids to protect the photosynthetic apparatus from damage caused by excess light and UV-B radiation was assessed. Therefore, the cyanobacterium Synechococcus was transformed with a foreign beta-carotene ketolase gene under a strong promoter leading to the accumulation of canthaxanthin. This diketo carotenoid is absent in the original strain. Most of the newly formed canthaxanthin was located in the thylakoid membranes. The endogenous beta-carotene hydroxylase was unable to interact with the ketolase. Therefore, only traces of astaxanthin were found. The transformant was treated with strong light (500 or 1200 mumol m-2 s-1) and with UV-B radiation. In contrast to a nontransformed strain the overall photosynthesis, measured as oxygen evolution, was protected from inhibition by light of 500 mumol m-2 s-1 and UV-B radiation of 6.8 W m-2. Furthermore, degradation in the light of chlorophyll and carotenoids at an irradiance of 1200 mumol m-2 s-1, which was substantial in the nontransformed control, was prevented. These results indicate that in situ canthaxanthin, which is formed at the expense of zeaxanthin and replaces this hydroxy carotenoid within the photosynthetic apparatus, is a better protectant against solar radiation. These findings are discussed on the basis of the in vitro properties such as inactivating peroxyl radicals, quenching of singlet oxygen and oxidation stability of these different carotenoid structures.  相似文献   

15.
Three filamentous and heterocystous N2-fixing cyanobacteria, Anabaena sp., Nostoc commune and Scytonema sp. were tested for the presence of ultraviolet-absorbing mycosporine-like amino acids (MAAs) and their induction by solar ultraviolet-B (UV-B) radiation. High performance liquid chromatographic (HPLC) studies revealed the presence of only one type of MAAs in all three cyanobacteria, that was identified as shinorine, a bisubstituted MAA containing both glycine and serine groups having an absorption maximum at 334 nm and a retention time of around 2.8 min. There was a circadian induction in the synthesis of MAAs when the cultures were exposed to mid-latitude solar radiation (Playa Unión, Rawson, Chubut, Patagonia, Argentina) for 3 days, 4–6th February, 2000. Solar radiation was measured by an ELDONET (European Light Dosimeter Network) filter radiometer permanently installed on the roof of the Estación de Fotobiología Playa Unión (43°18′ S; 65°03′ W). The maximum irradiances were around 450–500, 45–50 and 1.0–1.2 W m−2 for PAR (photosynthetic active radiation), UV-A (ultraviolet-A) and UV-B (ultraviolet-B), respectively. PAR and UV-A had no significant impact on MAA induction while UV-B induced the synthesis of shinorine in all three cyanobacteria. Shinorine was found to be induced mostly during the light period. During the dark period the concentration stayed almost constant. In addition to shinorine, another unidentified, water-soluble, brownish compound with an absorption maximum at 315 nm was found to be induced by UV-B only in Scytonema sp. and released into the medium. This substance was neither found in Anabaena sp. nor in Nostoc commune. Judging from the results, the studied cyanobacteria may protect themselves from deleterious short wavelength radiation by their ability to synthesize photoprotective compounds in response to UV-B radiation.  相似文献   

16.
Abstract— Plants of Vicia faba were grown in the field during early to midsummer while receiving two levels of supplemental UV-B radiation. Light-saturated photosynthesis and stomatal diffusive conductance of intact leaves did not show any indications of UV-radiation damage. Supplemental UV treatment did cause increased concentrations of UV-absorbing flavonoid pigments in leaf tissues and decreased epidermal transmittance of UV radiation. While epidermal transmittance was reduced 30% under the low-UV treatment, the high-UV treatment failed to elicit as large a change. However, total amounts of flavonoids in other leaf tissues did increase in response to the high-UV treatment (up to 12% greater per unit leaf area than for control plants). This may have been a major factor protecting underlying photosynthetic tissues.  相似文献   

17.
The sensitivity of the photosynthetic apparatus to ultraviolet-B (UV-B) irradiation was studied in cultures of unicellular green alga Scenedesmus obliquus incubated in low light (low photosynthetically active radiation intensity [LL]) and high light (high photosynthetically active radiation intensity [HL]) conditions, treated or not with exogenous polyamines. Biochemical and physicochemical measurements showed that UV-B radiation induces a decrease in the thylakoid-associated putrescine (Put) and an increase in spermine (Spm), so that the reduction of Put/Spm ratio leads to the increase of light-harvesting complex II (LHCII) size per active reaction center and, consequently, the amplification of UV-B effects on the photosynthetic apparatus. The separation of oligomeric and monomeric forms of LHCII from isolated thylakoids showed that UV-B induces an increase in the oligomeric forms of LHCII, which was more intense in LL than in HL. By manipulating the LHCII size with exogenous polyamines, the sensitivity degree of the photosynthetic apparatus to UV-B changed significantly. Specifically, the addition of Put decreased highly the sensitivity of LL culture to UV-B because of the inhibitory effect of Put on the LHCII size increasing, whereas the addition of Spm enhanced the UV-B injury induced in HL culture because of the increasing of LHCII size. The ability of the photosynthetic apparatus to recover the UV-B induced changes was also investigated.  相似文献   

18.
The effects of UV-B radiation on growth, photosynthesis, UV-B-absorbing compounds and NADP-malic enzyme have been examined in different cultivars of Phaseolous vulgaris L. grown under 1 and 12 mM nitrogen. Low nitrogen nutrition reduces chlorophyll and soluble protein contents in the leaves and thus the photosynthesis rate and dry-matter accumulation. Chlorophyll, soluble protein and Rubisco contents and photosynthesis rate are not significantly altered by ambient levels of UV-B radiation (17 microW m-2, 290-320 nm, 4 h/day for one week). Comparative studies show that under high nitrogen, UV-B radiation slightly enhances leaf expansion and dry-matter accumulation in cultivar Pinto, but inhibits these parameters in Vilmorin. These results suggest that the UV-B effect on growth is mediated through leaf expansion, which is particularly sensitive to UV-B, and that Pinto is more tolerant than Vilmorin. The effect of UV-B radiation on UV-B-absorbing compounds and on NADP-malic enzyme (NADP-ME) activity is also examined. Both UV-B radiation and low-nitrogen nutrition enhance the content of UV-B-absorbing compounds, and among the three cultivars used, Pinto exhibits the highest increases and Arroz the lowest. The same trend is observed for the specific activity and content of NADP-ME. On a leaf-area basis, the amount of UV-B-absorbing compounds is highly correlated with the enzyme activity (r2 = 0.83), suggesting that NADP-ME plays a key role in biosynthesis of these compounds. Furthermore, the higher sensitivity of Vilmorin than Pinto to UV-B radiation appears to be related to the activity of NADP-ME and the capacity of the plants to accumulate UV-B-absorbing compounds.  相似文献   

19.
The effects of supplementary ultraviolet-A (UV-A) and ultraviolet-B+A (UV-B+A) in the natural environment on the growth and morphology of various ecotypes of Arabidopsis thaliana were investigated. The ecotypes investigated were Columbia (Col-4), Landsberg erecta (Ler-0), Cvi-0, Wassilewskija, Enkheim-D, Aa-0 and Di-1. The mutant hy-4 was also used. Results varied with the radiation treatment, ecotype and parameter measured. Plants subjected to elevated UV-A were both insensitive (all parameters Cvi-0 and Col-4) and sensitive. When responses to UV-A occurred they were mostly inhibitory (all significant responses of Di-1 and Enkheim-D, most parameters of Wassilewskija, and some parameters of hy-4), however, promotive affects were observed for some parameters of Aa-0 and Ler-0. Supplementary UV-B+A inhibited all parameters of Di-1 and Enkheim-D and most parameters of Col-4, Ler-0 and hy-4, but Wassilewskija, Aa-0 and Cvi-0 were mostly insensitive. The magnitude of the UV-B+A response varied with ecotype (compare Di-1 with Ler-0). Some ecotypes were sensitive to UV-A but not UV-B+A (Aa-0), whereas others (Ler-0, Col-4) show the opposite sensitivities. A linear relationship is reported between the degree of UV-B+A inhibition of each ecotype and growth rate. The higher the growth rate the more susceptible the ecotype is to UV-B+A inhibition. This relationship holds for the majority of growth parameters measured.  相似文献   

20.
Plants of perennial ryegrass (Lolium perenne L.), red fescue (Festuca rubra L.), tall fescue (F. arundinacea Schreb.) and meadow fescue (F. pratensis Huds) were exposed at an outdoor facility located in Edinburgh, UK to modulated levels of UV-B radiation (280-315 nm) using banks of cellulose diacetate filtered UV-B fluorescent lamps that also produce UV-A radiation (315-400 nm). The plants were derived from a single clone of each species and were grown both with and without colonization by naturally-occurring fungal endophytes. The UV-B treatment was a 30% elevation above the ambient erythemally-weighted level of UV-B during July to October. Growth of treated plants was compared with plants grown under elevated UV-A radiation alone produced by banks of polyester filtered lamps and with plants grown at ambient levels of solar radiation under banks of unenergized lamps. At the end of the treatment period, sample leaves were collected for feeding trials with the desert locust Schistocerca gregaria (Forsk). The UV-B treatment produced no effects on the aboveground biomass of any of the four grasses. The UV-B treatment and the UV-A control exposure both increased plant height and the number of daughter plants formed by rhizome growth in F. rubra. There were significant effects of endophyte presence on the total fresh and dry weights of F. arundinacea and F. rubra, on fresh weight only in F. pratensis, and on the fresh and dry weights of inflorescence in F. arundinacea and L. perenne. There were no effects of UV treatments on the absolute amounts of leaf consumed or on the feeding preferences of locusts for leaves with or without endophyte in three species: F. rubra, F. arundinacea and L. perenne. In F. pratensis there was no effect of UV treatment on the weight of leaves consumed but a significant UV x endophyte interaction caused by a marked change in feeding preference between leaves with and without endophyte that differed between the UV-B treatment and UV-A control exposures. The alkaloid compounds known as lolines were analysed in leaves of F. pratensis and were only found in plants grown with endophyte. However, there was no significant relationship between total loline content and insect feeding preference. These effects illustrate the potential complexities of species interactions under increasing levels of UV-B. The experiment also demonstrates the importance of appropriate controls in UV lamp supplementation experiments for interpretation of both plant growth and insect feeding effects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号