首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Monte Carlo simulation and Poisson-Boltzmann results on some aspects of structure and thermodynamics of aqueous polyelectrolyte solutions are presented. The polyelectrolyte solution is described by an infinitely long cylindrical polyion surrounded by counterions modeled as rigid ions moving in a continuum dielectric. Ion-ion correlations in the form of volume average of the counterion-counterion distribution function in the double layer surrounding the polyion are reported for mono- and divalent counterions and for a range of polyion concentrations and charge density parameters in each case. These results confirm again strong influence of the charge density parameter of polyions on properties of polyelectrolyte solutions. The structural information is supplemented by the calculated thermodynamic properties such as osmotic coefficients and heats of dilutions; the latter quantity has not been examined yet in detail by computer simulations. The results are discussed in view of the existing experimental data from the literature for these properties.  相似文献   

2.
On the basis of a theory of Imai and Oosawa (Busseiron Kenkyu52, 42 (1952); 59, 99 (1953)), approximate analytic expressions for the surface charge density/surface potential relationship for a spherical colloidal particle in a salt-free (aqueous or nonaqueous) medium containing only counterions are derived. There is a certain critical value of the surface charge density (or the total surface charge) separating two distinct cases: low surface charge density case and high surface charge density case. In the latter case counterion condensation occurs in the vicinity of the particle surface. The results are in excellent agreement with numerical calculations for the case of dilute suspensions.  相似文献   

3.
The adsorption of sodium poly(4-styrene sulfonate) on oppositely charged beta-FeOOH particles is studied by electrooptics. The focus of this paper is on the release of condensed counterions from adsorbed polyelectrolyte upon surface charge overcompensation. The fraction of condensed Na+ counterions on the adsorbed polyion surface is estimated according to the theory of Sens and Joanny and it is compared with the fraction of condensed counterions on nonadsorbed polyelectrolyte. The relaxation frequency of the electrooptical effect from the polymer-coated particle is found to depend on the polyelectrolyte molecular weight. This is attributed to polarization of the layer from condensed counterions on the polyion surface, being responsible for creation of the effect from particles covered with highly charged polyelectrolyte. The number of the adsorbed chains is calculated also assuming counterion condensation on the adsorbed polyelectrolyte and semiquantative agreement is found with the result obtained from the condensed counterion polarizability of the polymer-coated particle. Our findings are in line with theoretical predictions that the fraction of condensed counterions remains unchanged due to the adsorption of highly charged polyelectrolyte onto weakly charged substrate.  相似文献   

4.
The condensation of monovalent counterions and trivalent salt particles around strong rigid and flexible polyelectrolyte chains as well as spherical macroions is investigated by Monte Carlo simulations. The results are compared with the condensation theory proposed by Manning. Considering flexible polyelectrolyte chains, the presence of trivalent salt is found to play an important role by promoting chain collapse. The attraction of counterions and salt particles near the polyelectrolyte chains is found to be strongly dependent on the chain linear charge density with a more important condensation at high values. When trivalent salt is added in a solution containing monovalent salt, the trivalent cations progressively replace the monovalent counterions. Ion condensation around flexible chains is also found to be more efficient compared with rigid rods due to monomer rearrangement around counterions and salt cations. In the case of spherical macroions, it is found that a fraction of their bare charge is neutralized by counterions and salt cations. The decrease of the Debye length, and thus the increase of salt concentration, promotes the attraction of counterions and salt particles at the macroion surface. Excluded volume effects are also found to significantly influence the condensation process, which is found to be more important by decreasing the ion size.  相似文献   

5.
The regularities of adsorption of a cationic polyelectrolyte, poly(diallyldimethylammonium chloride), on the surface of fused quartz are studied at different values of solution pH by capillary electrokinetics. It is shown that the polyelectrolyte adsorption on a negatively charged surface depends on the value of the surface charge and increases with its growth. At a low charge value (pH 3.8), the polyelectrolyte adsorption increases the quartz surface charge. The driving forces of the adsorption are both electrostatic interaction and forces of nonelectrostatic nature, probably hydrophobic interactions and a change in entropy due to the displacement of counterions from a double layer. The adsorption of poly(diallyldimethylammonium chloride) on quartz from alkaline and neutral solutions is irreversible, which indicates the key role of the electrostatic interaction. At low values of the surface charge, the nonelectrostatic interactions play the main role, thereby resulting in polyelectrolyte desorption.  相似文献   

6.
The electrophoretic behavior of a spherical dispersion of polyelectrolytes of arbitrary concentration is analyzed theoretically under a salt-free condition, that is, the liquid phase contains only counterions which come from the dissociation of the functional groups of polyelectrolytes. We show that, in general, the surface potential of a polyelectrolyte increases nonlinearly with its surface charge. A linear relation exists between them, however, when the latter is sufficiently small; and the more dilute the concentration of polyelectrolytes, the broader the range in which they are linearly correlated. If the amount of surface charge is sufficiently large, counterion condensation occurs, and the rate of increase of surface potential as the amount of surface charge increases declined. Also, it leads to an inverse in the perturbed potential near the surface of a polyelectrolyte, and its mobility decreases accordingly. For a fixed amount of surface charge, the lower the concentration of polyelectrolytes and/or the lower the valence of counterions, the higher the surface potential. The qualitative behavior of the mobility of a polyelectrolyte as the amount of its surface charge varies is similar to that of its surface charge.  相似文献   

7.
This study analytically examines the steady diffusioosmotic and electroosmotic flows of an electrolyte solution in a fine capillary slit with each of its inside walls covered by a layer of adsorbed polyelectrolytes. In this solvent-permeable and ion-penetrable surface charge layer, idealized polyelectrolyte segments are assumed to distribute at a uniform density. The electric double layer and the surface charge layer may have arbitrary thicknesses relative to the gap width between the slit walls. The electrostatic potential distribution on a cross section of the slit is obtained by solving the linearized Poisson–Boltzmann equation, which applies to the case of low potentials or low fixed-charge densities. Explicit formulas for the fluid velocity profile due to the imposed electrolyte concentration gradient or electric field through the slit are derived as the solution of a modified Navier–Stokes/Brinkman equation. The results demonstrate that the structure of the surface charge layer can lead to an augmented or a diminished electrokinetic flow (even a reversal in direction of the flow) relative to that in a capillary with bare walls, depending on the characteristics of the capillary, of the surface charge layer, and of the electrolyte solution. For the diffusioosmotic flow with an induced electric field, competition between electroosmosis and chemiosmosis can result in more than one reversal in direction of the flow over a range of the Donnan potential of the adsorbed polyelectrolyte in the capillary.  相似文献   

8.
Electrostatic internal and free energies are calculated for the cell model of a polyelectrolyte solution having two kinds of counterions of the same charge but different size. The calculation is based on the solution of the Poisson–Boltzmann equation obtained previously. The electrostatic contributions to the internal and free energies are presented as functions of valences, radii, and mole fractions of counterions, and their application to interpretation of experimental results is discussed.  相似文献   

9.
Huang SW  Hsu JP  Tseng S 《Electrophoresis》2001,22(10):1881-1886
The electrophoretic behavior of a planar particle covered by an ion-penetrable membrane, which simulates a biological entity, is investigated. We show that, in general, a point charge model will overestimate the electrophoretic mobility of a particle and the deviation increases with the increase in the concentration of fixed charge and with the decrease in the thickness of membrane layer. As in the case of a point charge model, the present model also predicts a local maximum in the absolute mobility as the thickness of membrane layer varies. If the sizes of counterions of various valences are the same, then the lower the valence of counterions, the larger the mobility, and the larger the counterions, the greater the mobility. The latter is consistent with the experimental observations in the literature. For the level of the concentration of fixed charge examined, the effect of coions on the mobility is negligible.  相似文献   

10.
A simple numerical method, which does not involve numerical integration of the Poisson-Boltzmann equations, is presented for obtaining the relationship between the Donnan potential and surface potential of a spherical soft particle (i.e., a polyelectrolyte-coated particle) in a symmetrical electrolyte solution. We assume that a soft particle consists of the particle core of radius a covered with an ion-penetrable surface layer of polyelectrolytes of thickness d and that ionized groups of valence Z are distributed at a uniform density of N in the polyelectrolyte layer and the relative permittivity takes the same value in the regions outside and inside the polyelectrolyte layer. The Donnan potential and surface potential are determined by the values of a, d, Z, N, and the Debye-Hückel parameter kappa of the electrolyte solution. Numerical results obtained by the present method are in excellent agreement with exact results obtained by solving the nonlinear spherical Poisson-Boltzmann equations for the both regions inside and outside the polyelectrolyte layer.  相似文献   

11.
Electrokinetic equations for electrophoresis of a soft particle (that is, a hard particle covered with a layer of polyelectrolytes) have been solved previously under the conditions that the net force acting on the soft particle as a whole (the particle core plus the polyelectrolyte layer) must be zero and that the electrical force acting on the polymer segment is balanced with a frictional force exerted by the liquid flow (J. Colloid Interface Sci. 163, 474 (1994)). In the present work we replaced the latter condition by the alternative and more appropriate condition that pressure is continuous at the boundary between the surface layer and the surrounding electrolyte solution to solve the electrokinetic equations and obtained the general mobility expression for the electrophoretic mobility of a spherical soft particle. It is found that the general mobility expression thus obtained reproduces all of the approximate mobility expressions derived previously and, in addition, that the continuous pressure condition leads to the correct limiting behavior of the electrophoretic mobility in the case where the frictional coefficient tends to zero (this behavior cannot be derived from the force balance condition for the polyelectrolyte layer). Copyright 2000 Academic Press.  相似文献   

12.
The effect of polyelectrolyte charge density on the electrical properties and stability of suspensions of oppositely charged oxide particles is followed by means of electro-optics and electrophoresis. Variations in the electro-optical effect and the electrophoretic mobility are examined at conditions where fully ionized pectins of different charge density adsorb onto particles with ionizable surfaces. The charge neutralization point coincides with the maximum of particle aggregation in all suspensions. We find that the concentration of polyelectrolyte, needed to neutralize the particle charge, decreases with increasing charge density of the pectin. The most highly charged pectin presents an exception to this order, which is explained with a reduction of the effective charge density of this pectin due to condensation of counterions. The presence of condensed counterions, remaining bound to the pectin during its adsorption on the particle surface, is proved by investigation of the frequency behavior of the electro-optical effect at charge reversal of the particle surface.  相似文献   

13.
A model of a polyelectrolyte solution has been formulated on the basis of the formalism of the thermodynamic perturbation theory. Macromolecules have been described in terms of the model of a flexible chain with an excluded volume and a variable electrical charge. During construction of the thermodynamic perturbation theory, a set of three independent subsystems—polyelectrolyte macromolecules placed in a structureless charge background of counterions, counterions placed in a structureless charge background of macromolecules, and Coulomb gas ions of a low-molecular-mass salt—has been taken as the reference system. In the framework of this model, liquid-liquid phase separation due to strong correlation-induced attraction has been predicted. The behavior of the degree of ionization over a wide monomer concentration range, including the region of phase separation either in a salt-free solution or in the presence of univalent ions of a low-molecular-mass salt in the solution, has been studied. It has been shown that macromolecules in the coexisting phases should have different degrees of ionization. The occurrence of phase separation under normal conditions in the case when dimethylformamide is taken as a solvent and the nonoccurrence of this phase separation in the case of aqueous solutions of flexible-chain polyelectrolytes are predicted.  相似文献   

14.
The simple scaling theory of weakly-charged polyelectrolyte brush (the layer of polyelectrolyte chains grafted at one end onto an impermeable surface) immersed into a good solvent has been developed.The asymptotic scaling dependences of the free layer thickness on charge density and solvent strength are obtained. The behavior of polyelectrolyte brush subjected to normal and tangential external forces is considered. New “polyelectrolyte effect” is predicted: shear of a free polyelectrolyte brush leads to a decrease in brush thickness in contrast to the case of a free neutral brush. Such behavior is equivalent to that of a neutral brush subjected to external normal stretching force. This force in the case of polyelectrolyte brush is created by the osmotic pressure of mobile counterions neutralizing grafted chain charges.  相似文献   

15.
 A general theory for the electrophoresis of a cylindrical soft particle (i.e., a cylindrical hard colloidal particle coated with a layer of ion-penetrable polyelectrolytes) in an electrolyte solution in an applied transverse or tangential electric field is proposed. This theory unites two different electrophoresis theories for cylindrical hard particles and for cylindrical polyelectrolytes. That is, the general mobility expression obtained in this paper tends to the mobility expression for a cylindrical hard particle for the case where the polyelectrolyte layer is absent or the frictional coefficient in the poly-electrolyte layer becomes infinity, whereas it tends to that for a cylin-drical polyelectrolyte in the absence of the particle core. Simple approximate analytic mobility expressions are also presented. Received: 29 August 1996 Accepted: 7 November 1996  相似文献   

16.
We present a theoretical study on the electrophoresis of a soft particle with a dielectric charged rigid core grafted with a charge-regulated polyelectrolyte layer. The polyelectrolyte layer possesses either an acidic or a basic functional group and the charge dissociation depends on the local pH and ionic concentration of the electrolyte. The dielectric rigid core is considered to possess a uniform volumetric charge density. The electric potential distribution is determined by computing the Poisson-Boltzmann equation outside the core coupled with a Poisson equation inside the impermeable core along with suitable matching conditions at the core-shell interface. The computed electric field is used to determine the mobility of the particle through an existing analytic expression based on the Debye-Huckel approximation. Our results are found to be in good agreement with the existing solutions for the limiting cases. The influence of the core charge density, ionic concentration, and pH of the electrolyte on the particle mobility is studied for different choice of hydrodynamic penetration length of the polyelectrolyte and dissociation constant of the functional group. The critical value of the pH required to achieve zero mobility is estimated. We find that in a monovalent electrolyte solution, the soft particle with a net negative (positive) charge can have positive (negative) mobility.  相似文献   

17.
We investigated the effect of counterion valence on the structure and swelling behavior of polyelectrolyte brushes using a nonlocal density functional theory that accounts for the excluded-volume effects of all ionic species and intrachain and electrostatic correlations. It was shown that charge correlation in the presence of multivalent counterions results in collapse of a polyelectrolyte brush at an intermediate polyion grafting density. At high grafting density, the brush reswells in a way similar to that in a monovalent ionic solution. In the presence of multivalent counterions, the nonmonotonic swelling of a polyelectrolyte brush in response to the increase of the grafting density can be attributed to a competition of the counterion-mediated electrostatic attraction between polyions with the excluded-volume effect of all ionic species. While a polyelectrolyte brush exhibits an "osmotic brush" regime at low salt concentration and a "salted brush" regime at high salt concentration regardless of the counterion valence, we found a smoother transition as the valence of the counterions increases. As observed in recent experiments, a quasi-power-law dependence of the brush thickness on the concentration ratio can be identified when the monovalent counterions are replaced with trivalent counterions at a fixed ionic strength.  相似文献   

18.
In this paper we consider the influence of counterion distribution on the behavior of polyelectrolyte systems. We propose the unified model to describe and to compare the swelling and collapse properties of single polyelectrolyte chains in dilute solutions, microgel particles of various molecular masses, and (as a limiting case) macroscopic gels. A novel feature of the new approach is that we distinguish three possible states of counterions: free counterions inside and outside the polymer macromolecule and a bound state of counterions forming ion pairs with corresponding ions of polymer chains. The latter possibility becomes progressively important when macromolecules or gels shrink. In this case the formation of a supercollapsed state is possible, when all couterions are trapped and form ion pairs. On the other hand, the fact that counterions can float in the outer solution affects essentially the conformation of polyelectrolyte chains in dilute solutions of good quality where practically all counter ions can escape the space inside polymer coils and the repulsion between uncompensated charges plays an important role in the chain behavior.  相似文献   

19.
Most of the modern theories of grafted polyelectrolyte brushes are valid only for moderate stretching of the polyelectrolyte. However, particularly at low ionic strength and high grafting densities, even a moderate charge of the polyelectrolyte can generate a strong stretching. A simple mean field model for strongly stretched grafted polyelectrolyte brushes is suggested, based on an approximate calculation of the partition function of a polyelectrolyte chain. It is shown that the average Boltzmann factor of a possible chain configuration can be approximated by the Boltzmann factor of a configuration with a constant monomer distribution, for which the free energy can be readily obtained. The monomer density in the brush and the interaction between two surfaces with grafted polyelectrolyte brushes could be calculated as a statistical average over all possible configurations. Some simple analytical results are derived, and their accuracy is examined. The dependence of the brush thickness on the electrolyte concentration is investigated, and it is shown that the trapping of a fraction of counterions in the brush influences strongly the thickness of the brush. When two surfaces with grafted polyelectrolyte brushes approach each other more rapidly than the ion diffusion parallel to the surface, the trapping of the counterions between the brushes can affect the interactions by orders of magnitude.  相似文献   

20.
We investigate the structure of end-tethered polyelectrolytes using Monte Carlo simulations and molecular theory. In the Monte Carlo calculations we explicitly take into account counterions and polymer configurations and calculate electrostatic interaction using Ewald summation. Rosenbluth biasing, distance biasing, and the use of a lattice are all used to speed up Monte Carlo calculation, enabling the efficient simulation of the polyelectrolyte layer. The molecular theory explicitly incorporates the chain conformations and the possibility of counterion condensation. Using both Monte Carlo simulation and theory, we examine the effect of grafting density, surface charge density, charge strength, and polymer chain length on the distribution of the polyelectrolyte monomers and counterions. For all grafting densities examined, a sharp decrease in brush height is observed in the strongly charged regime using both Monte Carlo simulation and theory. The decrease in layer thickness is due to counterion condensation within the layer. The height of the polymer layer increases slightly upon charging the grafting surface. The molecular theory describes the structure of the polyelectrolyte layer well in all the different regimes that we have studied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号