首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
S. Kase 《Rheologica Acta》1982,21(2):210-211
The general integral of the very simple equation 21/n/() was found to describe the cross sectional area of filaments of isothermal power law fluids while in transient stretching where is time and is the initial location of fluid molecules at time = 0 given as the distance from a reference point fixed in space. Any such stretching transient given as a solution of the above equation is physically realizable subject to the restrictions > 0 and/ < 0.  相似文献   

2.
Summary Wood's analysis of detonation wave structure for an irreversible, unimolecular reaction with small rate parameter is used to study the influence of upstream properties on the coupling between pressure rise and reaction zones. The variation of a reduced distance due to adiabatic upstream burning, upstream heat addition, and variation of heat release per unit mass of reactant is considered. is the reduced distance between the point of minimum velocity (essentially the point of maximum pressure) and the point where the temperature is some chosen fraction of the final temperature, i.e., is a measure of the coupling between pressure rise and reaction zones.The wave structure immediately downstream of the pressure rise zone is found to be most sensitive to adiabatic upstream burning but much less sensitive to upstream heat addition and variation of heat release per unit mass of reactant. The first two processes cause to decrease because the temperature and reaction rate at the pressure maximum are increased. The last process causes to increase slightly because in this case the temperature and reaction rate at the pressure maximum is decreased. The wave structure far downstream of the pressure rise zone is not altered by adiabatic upstream burning but is influenced by upstream heat addition and variation of heat release per unit mass of reactant. The latter two processes cause to decrease. It is also shown that the wave structure immediately downstream of the pressure rise zone, for detonation waves which initially consist of widely separated pressure rise and reaction zones, is very sharply altered by the three processes of upstream variation here considered. Upstream burning and upstream heat addition cause rapid reductions in || while an increase in heat release per unit mass of reactant increases || for the same reasons as noted in the case of more closely coupled waves.Available experimental data are not directly applicable to the present results. However there is sufficient similarity between theory and experiment to support the qualitative trends predicted by this idealized analysis.  相似文献   

3.
Mixed convection along a vertical nonisothermal wedge embedded in a fluid-saturated porous media incorporating the variation of permeability and thermal conductivity is studied. The surface temperature is assumed to vary as a power of the axial coordinate measured from the leading edge of the plate. A nonsimilar mixed convection parameter and a pseudo-similarity variable are introduced to cast the governing boundary layer equations into a system of dimensionless equations which are solved numerically using finite difference method. The entire mixed convection regime is covered by the single nonsimilarity parameter =[1+(Ra x /Pe x )1/2]–1 from pure forced convection (=1) to pure free convection (=0). The problem is solved using nonsimilarity solution for the case of variable wall temperature. Velocity and temperature profiles as well as local Nusselt number are presented. The wedge angle geometry parameter is ranged from 0 to 1.  相似文献   

4.
Summary A collocation technique is used in conjunction with complex variable methods and conformal transformation to determine the elastic bending moments and shear forces in a uniformly loaded infinite flat plate structure, supported at each node of a regular rectangular lattice by rigid rectangular columns of finite dimensions.Nomenclature A n coefficients in the series solution of the deflection function - a, b lengths of slab panel sides - C edge of column capital - c 1, c 2 column side dimensions - D plate rigidity - f 1, f 2 functions defining the boundary conditions of the problem - k x , k y , k numerical factors for bending moments - k value characterizing the aspect ratio of the column sides - k n parameters associated with complex potentials - m, n coefficients defining the mapping function - M x , M y bending moments in x and y directions - M , M radial and tangential bending moments - Q x , Q y shear forces - q uniformly distributed load acting on plate surface - R constant of the mapping function - r, polar coordinate system - S plate region in the (x, y) plane - w deflection function in the plate region - n , n parameters associated with the deflection functions - unit circle - complex mapping plane - , curvilinear coordinate system - Poisson's ratio of the slab material - (), x (), (), (), () complex potentials defining the deflection functions - value of on the unit circle - () mapping function  相似文献   

5.
A mixed convection parameter=(Ra) 1/4/(Re)1/2, with=Pr/(1+Pr) and=Pr/(1 +Pr)1/2, is proposed to replace the conventional Richardson number, Gr/Re2, for combined forced and free convection flow on an isothermal vertical plate. This parameter can readily be reduced to the controlling parameters for the relative importance of the forced and the free convection,Ra 1/4/(Re 1/2 Pr 1/3) forPr 1, and (RaPr)1/2/(RePr 1/2 forPr 1. Furthermore, new coordinates and dependent variables are properly defined in terms of, so that the transformed nonsimilar boundary-layer equations give numerical solutions that are uniformly valid over the entire range of mixed convection intensity from forced convection limit to free convection limit for fluids of any Prandtl number from 0.001 to 10,000. The effects of mixed convection intensity and the Prandtl number on the velocity profiles, the temperature profiles, the wall friction, and the heat transfer rate are illustrated for both cases of buoyancy assisting and opposing flow conditions.
Mischkonvektion an einer vertikalen Platte für Fluide beliebiger Prandtl-Zahl
Zusammenfassung Für die kombinierte Zwangs- und freie Konvektion an einer isothermen senkrechten Platte wird ein Mischkonvektions-Parameter=( Ra) 1/4 (Re)1/2, mit=Pr/(1 +Pr) und=Pr/(1 +Pr)1/2 vorgeschlagen, den die gebräuchliche Richardson-Zahl, Gr/Re2, ersetzen soll. Dieser Parameter kann ohne weiteres auf die maßgebenden Kennzahlen für den relativen Einfluß der erzwungenen und der freien Konvektion reduziert werden,Ra 1/4/(Re 1/2 Pr 1/3) fürPr 1 und (RaPr)1/4/(RePr)1/2 fürPr 1. Weiterhin werden neue Koordinaten und abhängige Variablen als Funktion von definiert, so daß für die transformierten Grenzschichtgleichungen numerische Lösungen erstellt werden können, die über den gesamten Bereich der Mischkonvektion, von der freien Konvektion bis zur Zwangskonvektion, für Fluide jeglicher Prandtl-Zahl von 0.001 bis 10.000 gleichmäßig gültig sind. Der Einfluß der Intensität der Mischkonvektion und der Prandtl-Zahl auf die Geschwindigkeitsprofile, die Temperaturprofile, die Wandreibung und den Wärmeübergangskoeffizienten werden für die beiden Fälle der Strömung in und entgegengesetzt zur Schwerkraftrichtung dargestellt.

Nomenclature C f local friction coefficient - C p specific heat capacity - f reduced stream function - g gravitational acceleration - Gr local Grashoff number,g T w –T )x3/v2 - Nu local Nusselt number - Pr Prandtl number,v/ - Ra local Rayleigh number,g T w –T x 3/( v) - Re local Reynolds number,u x/v - Ri Richardson number,Gr/Re 2 - T fluid temperature - T w wall temperature - T free stream temperature - u velocity component in thex direction - u free stream velocity - v velocity component in they direction - x vertical coordinate measuring from the leading edge - y horizontal coordinate Greek symbols thermal diffusivity - thermal expansion coefficient - mixed convection parameter (Ra)1/4/Re)1/2 - pseudo-similarity variable,(y/x) - 0 conventional similarity variable,(y/x)Re 1/2 - dimensionless temperature, (T–T T W –T - unified mixed-flow parameter, [(Re) 1/2 + (Ra)1/4] - dynamic viscosity - kinematic viscosity - stretched streamwise coordinate or mixed convection parameter, [1 + (Re)1/2/(Ra) 1/4]–1=/(1 +) - density - Pr/(1 + Pr) w wall shear stress - stream function - Pr/(l+Pr)1/3 This research was supported by a grand from the National Science Council of ROC  相似文献   

6.
Zusammenfassung Zur Berechnung der dynamischen Idealviskosität Ideal (T) und der Idealwärmeleitfähigkeit ideal (T) benötigt man die kritische TemperaturT kr, das kritische spezifische Volum kr, die MolmasseM, den kritischen Parameter kr und die molare isochore WärmekapazitätC v(T). Sowohl das theoretisch, als auch das empirisch abgeleitete erweiterte Korrespondenzgesetz ergeben eine für praktische Zwecke ausreichende Genauigkeit für die Meßwertwiedergabe, die bei den assoziierenden Stoffen und den Quantenstoffen jedoch geringer ist als bei den Normalstoffen.
The extended correspondence law for the ideal dynamic viscosity and the ideal thermal conductivity of pure substances
For the calculation of the ideal dynamic viscosity Ideal (T) and the ideal thermal conductivity ideal (T) the critical temperatureT kr, the critical specific volumev kr, the molecular massM, the critical parameter kr, and the molar isochoric heat capacityC v(T) is needed. Not only the theoretically determined but also the empirically determined extended correspondence law gives for practical use a good representation of the measured data, which for the associating substances and the quantum substances is not so good as for the normal substances.
  相似文献   

7.
Summary A general similarity solution suggested by Watson for the problem of the laminar, radial, free-jet with swirl has been previously discussed by Riley who also calculated the order to which the solution was valid. That problem is considered in more detail here and higher order terms are given. It is shown that a perturbation scheme for the stream function consisting of a series of inverse powers of and which uses the asymptotic similarity solution as the basic solution is inadequate, and a modification to the series so as to include terms like n (ln ) m must be adopted in order to satisfy the boundary conditions. It is also shown that the general similarity solution may be obtained from the asymptotic series representing the general case with swirl for certain special values of the free constants and also for the no-swirl or free-jet problem. The asymptotic series is given to order –13 for the case of swirl and to order –29 when there is no swirl.  相似文献   

8.
This paper proposed a proper inclination parameter and transformation variables for the analysis of free convection from an inclined plate with uniform surface heat flux to fluids of any Prandtl number. Very accurate numerical results and a simple correlation equation are obtained for arbitrary inclination from the horizontal to the vertical and for 0.001 Pr. Maximum deviation between the correlated and calculated data is less than 1.2%.
Freie Konvektion an einer beliebig geneigten Platte mit erheblicher Wärmestromdichte an der Oberfläche
Zusammenfassung Für die Berechnung von freier Konvektion von Fluiden mit beliebiger Prandtl-Zahl an einer geneigten Platte mit einheitlicher Wärmestromdichte an der Oberfläche werden ein zweckmäßiger Neigungsparameter und Transformationsvariablen eingeführt. Sehr genaue numerische Ergebnisse und eine einfache Korrelationsgleichung wurden für beliebige Neigungen zwischen der Horizontalen und der Vertikalen und für 0.001Pr erhalten. Die größte Abweichung zwischen Korrelations- und berechneten Daten liegt bei weniger als 1.2%.

Nomenclature f reduced stream function - g gravitational acceleration - h local heat transfer coefficient - k thermal conductivity - Nu local Nusselt number - p static pressure difference - Pr Prandtl number - q w wall heat flux - Ra* modified local Rayleigh number,g(q w x/k)x 3/ - T fluid temperature - T temperature of ambient fluid - u velocity component inx-direction - v velocity component iny-direction - x coordinate parallel to the plate - y coordinate normal to the plate Greek symbols thermal diffusivity - thermal expansion coefficient - (Ra* |sin|)1/5/( Ra* cos)1/6 - ( Ra* cos)1/6+( Ra*|sin|)1/5 - (y/x) - dimensionless temperature, (TT )/(q w x/k) - kinematic viscosity - [1+( Ra* cos)1/6/( Ra*|sin|)1/5]–1 - density of fluid - Pr/(1+Pr) - w wall shear stress - angle of inclination measured from the horizontal - stream function - dimensionless static pressure difference, p x 2/ 4  相似文献   

9.
The turbulence in the ocean and atmosphere is most of the time non-homogeneous in nature. These spatial changes could affect the structure of the turbulence. In this work a classification is proposed to determine the intermittency and mixing ability. The variation of the structure functions and the scaling exponent in decaying non-homogeneous turbulence produced by a grid and by a jet is measured with a sonic velocimeter SONTEK3-D. We use Extended Self Similarity (ESS) to obtain better estimates of the scaling exponents of the structure functions of order up to the 6th. We study the variation of the absolute scaling exponents p and relative scaling exponents ¯p as a function of distance from the source of turbulence. In most cases, the absolute scaling exponent 3 is shown to vary as function of the separation distance l. On the other hand the relative scaling exponents ¯p depend on the location of the flow and in most cases the deviations from the Kolmogorov 1941 scaling are related to the intermittency.  相似文献   

10.
Summary The propagation of time harmonic waves in a certain continuously layered medium is considered. The wave numberk=k() is assumed to vary with the Cartesian coordinate ; the law of variation is taken to be the one studied by Epstein. An integral representation for the wave function in this medium is derived. The method by which this is done is considerably simpler than the usual treatment of the problem with the aid of hypergeometric functions.  相似文献   

11.
An experimental study was done to quantify the effects of a variety of background particulates on the delayed laminar-turbulent transition of a thermally stabilized boundary layer in water. A Laser-Doppler Velocimeter system was used to measure the location of boundary layer transition on a 50 mm diameter, 9:1 fineness ratio ellipsoid. The ellipsoid had a 0.15 m RMS surface finish. Boundary layer transition locations were determined for length Reynolds numbers ranging from 3.0 × 106 to 7.5 × 106. The ellipsoid was tested in three different heating conditions in water seeded with particles of four distinct size ranges. For each level of boundary layer heating, measurements of transition were made for clean water and subsequently, water seeded with 12.5 m, 38.9 m, 85.5 m and 123.2 m particles, alternately. The three surface heating conditions tested were no heating, T = 10°C and T = 15°C where T is the difference between the inlet model heating water temperature, T i, and free stream water temperature, T . The effects of particle concentration were studied for 85.5 m and 123.2 m particulates.The results of the study can be summarized as follows. The 12.5 m and 38.9 m particles has no measurable effect on transition for any of the test conditions. However, transition was significantly affected by the 85.5 m and 123.2 m particles. Above a length Reynolds number of 4 × 106 the boundary layer transition location moved forward on the body due to the effect of the 85.5 m particles for all heating conditions. The largest percentage changes in transition location from clean water, were observed for 85.5 m particles seeded water.Transition measurements made with varied concentrations of background particulates indicated that the effect of the 85.5 m particles on the transition of the model reached a plateau between 2.65 particulates/ml concentration and 4.2 particles/ml. Measurements made with 123.3 m particles at concentrations up to 0.3 part/ml indicated no similar plateau.  相似文献   

12.
13.
Summary The heat transfer problems of forced-convection in non-circular pipes have many engineering applications. In this a paper a formal solution is given when the mapping function z=w()= a, which maps conformally the cross-section of the channel onto the unit circle in the -plane is known. The expression for the average velocity, average temperature, mixed mean temperature, heat transfer rate and the Nusselt number have been expressed in terms of the constants a n .  相似文献   

14.
A solution is presented for incompressible non-Newtonian liquids of the one-dimensional stationary temperature field which arises due to heat dissipation between two concentric cylinders, the outer fixed and thermostated, the inner rotating at a constant angular velocity. The object of the study is to outline a simple procedure for determining the temperature rise of the liquid and, primarily, to ascertain the corrections of the consistent variables and D which enable the experimenter to rectify the rheogram on the basis of measurement of the shear stress and the angular velocity . The results obtained are summarized in graphical form as diagrams of the temperature and velocity fields and, to facilitate practical application of the correction procedure, in a table relating the dimensionless temperature function (, n, ) to the geometry , the flow behaviour index n, and the coefficient of temperature rise and showing the function (1) as well.List of symbols a radius of the inner cylinder - b radius of the outer cylinder - constant angular velocity of the inner cylinder - r* dimensionless radial coordinate r/b - * dimensionless angular velocity of the liquid - K fluid consistency index - n flow behaviour index - dimensionless temperature rise (T–T 0)/T 0 - T temperature of measured liquid (K) - T 0 temperature of the thermostated bath - Br Brinkman criterion - f thermal conductivity of liquid - C constant of integration - coefficient of sensitivity in consistency-temperature law - coefficient of sensitivity divided by flow behaviour index: /n - (r*) dimensionless temperature function - coefficient of temperature rise; =Br· - ratio of the radii of inner and outer cylinder - T(1) temperature on the inner wall of the outer cylinder, i.e. for r*=1 - outer cylinder wall thickness - coefficient of heat transfer - q heat flux - k overall heat transfer coefficient - h height of measured liquid - s thermal conductivity of the outer cylinder - (1) derivative of the dimensionless temperature function at point r*=1 - dimensionless heat transfer constant - i (r*) dimensional temperature function calculated for isothermal wall; T(1)=T 0 - dynamic viscosity - i () maximum value of the dimensionless temperature function - dimensionless symbol — ratio of C/C 0 - D rate of shear - shear stress - rate of shear (not considering dissipation) - shear stress (not considering dissipation) - D + rate of shear corrected for the inner cylinder temperature - + shear stress on the inner cylinder obtained by measurement on the rheometer used - j rate of shear on the inner cylinder for j-th measurement referred to a single constant temperature  相似文献   

15.
The problem of local simulation of stagnation point heat transfer to a blunt body is solved within the framework of boundary layer theory on the assumption that the simulation subsonic high-enthalpy flow is in equilibrium outside the boundary layer on the model, while the parameters of the natural flow are in equilibrium at the outer edge of the boundary layer on the body. The parameters of the simulating subsonic flow are expressed in terms of the total enthalpyH 0, the stagnation point pressurep w and the velocityV 1 for the natural free-stream flow in the form of universal functions of the dimensionless modeling coefficients=R m * /R b * ( .<1),=V 1/2H 0 ( .<1) whereR m * and R b * are the effective radii of the model and the body at their stagnation points. Approximate conditions for modeling the heat transfer from a high-enthalpy (including hypersonic) flow to the stagnation point on a blunt body by means of hyposonic (M1) flows, corresponding to the case 21, are obtained. The possibilities of complete local simulation of hypersonic nonequilibrium heat transfer to the stagnation point on a blunt body in the hyposonic dissociated air jets of a VGU-2 100-kilowatt induction plasma generator [4, 5] are analyzed.Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No.1, pp. 172–180, January–February, 1993.  相似文献   

16.
A numerical study of laminar natural convection inside uniformly heated, partially or fully filled horizontal cylinders is made. A coordinate transformation which simplifies the discretization of the equations of motion and energy is utilized. The resulting system of partial differential equations with their boundary conditions is solved using central differences for various Prandtl and Grashof numbers for two different grid sizes. The flow in completely filled cylinders for which experimental data are available is predicted. Close agreement between steady-state predictions and experiments is obtained for temperature and velocity profiles as well as for the streamline contours and isotherms. The technique is further demonstrated by solving the transient natural convection flow inside a partially filled horizontal cylinder with an adiabatic free surface and subjected to uniform wall heating.
Laminare freie Konvektion in horizontalen Zylindern
Zusammenfassung Es wurde eine numerische Berechnung der laminaren, freien Konvektion in gleichmäßig beheizten, teilweise oder ganz gefüllten, horizontalen Zylindern durchgeführt. Dabei wird eine Koordinatentransformation benützt, welche die Diskretisierung der Bewegungs- und der Energiegleichung vereinfacht. Das so resultierende System von partiellen Differentialgleichungen wird, zusammen mit seinen Randbedingungen, unter Verwendung einer Differenzenmethode für verschiedene Prandtl und Grashof-Zahlen sowie für zwei verschiedene Gittergrößen gelöst. Für den vollständig gefüllten Zylinder, für den experimentelle Daten verfügbar sind, wird die Strömung vorhergesagt. Dabei wird für stationäre Zustände gute Übereinstimmung zwischen Rechnung und Experiment erzielt. Dies gilt sowohl für den Verlauf der Stromlinien als auch für den der Isothermen. Das Verfahren wird weiterhin am Beispiel der Berechnung instationärer, freier Konvektion in einem partiell gefüllten, horizontalen Zylinder demonstriert, wobei eine adiabate, freie Oberfläche und gleichmäßige Beheizung der Wand angenommen sind.

Nomenclature g acceleration due to gravity, m/s2 - Gr R * modified Grashof number =gqR4/kv2 - Gr R Grashof number =gTR3/v2 - H heat function vector, dimensionless - k thermal conductivity, W/mK - L(Y) cord length associated with coordinateY, dimensionless - Pr Prandtl number=v/ - q wall heat flux, W/m2 - R radius, m - r(X, Y,Z) distance of a boundary point from the reference axis, dimensionless - S vector derived from the flow field solution, dimensionless - T temperature, K - T w wall temperature, K - T reference temperature, K - t time, s - u, v velocity components inx, y directions, m/s - U, V dimensionless velocity components inX- and Y-direction normalized withU - U reference velocity=gqR2/k or gTR, m/s - V velocity vector, dimensionless - W vorticity vector, dimensionless - W vorticity, dimensionless - x, y, z cartesian coordinates, m - X, Y, Z cartesian coordinates normalized with a reference length, dimensionless Greek letters thermal diffusivity, m2/s - coefficient of thermal expansion, K–1 - ,,, non-dimensional coordinates in the transformed domain - non-dimensional temperature =(T–T)k/qR or T–T/Tw–T - v kinematic viscosity, m2/s - non-dimensional time=v/R2 GrRt or v/R2 G R * t - angle measured from the bottom of the cylinder, rads - * angle measured from the axis on (– ) plane, rads - heat potential, dimensionless - angle of incidence of the heat flux vector, rads - non-dimensional stream function - vector potential, dimensionless - grid size, dimensionless - 2 Laplacian operator - gradient vector  相似文献   

17.
Summary A theoretical analysis of the pressure distribution in the vicinity of a wedge for separated turbulent flow is made. The solution is based on Vasiliu's analysis of the pressure distribution for step-induced separation using the Crocco-Lees mixing coefficient and Chapman's dividing streamline model. Theoretical results are compared with experimental data by Sterrett and Emery for Mach 5.8 and wedge angles of 28° and 34.17°.Nomenclature b mixing coefficient distribution factor - C p pressure coefficient - F() defined by equation (3) - f 1() defined by equation (5) - f() defined by equation (10) - I 1 momentum integral, reference 4 - K mixing coefficient, defined by equation (4) - K j jet flow parameter, reference 4 - K 0 value of K at separation - K 0r value of K in the reattachment zone - () defined by equation (11) - M Mach number - M free stream Mach number - P pressure - P S pressure at the separation point - P free stream pressure - r S defined as P S/P - X distance from the separation point - X n distance from separation to reattachment point - X W distance from separation point to wedge corner - wedge angle - specific heats ratio - mixing layer thickness - j mixing layer thickness in jet flow solution - j * displacement thickness in jet flow solution - S boundary layer thickness at separation - dimensionless coordinate, defined as X/ S - n value of at the reattachment point - deflection angle of flow outside the mixing layer - jet flow parameter, reference 4 - dimensionless pressure, defined as P/P S - [ c ]max jet flow parameter, reference 4 - c jet spread factor, reference 4  相似文献   

18.
Summary Inhomogeneous quasiplastic deformations give rise to internal stresses in a solid body. These non-metric stresses are investigated in the stationary case by means of non-linear continuum theory based on a non-metric, non-Euclidean geometry. The theory is developed for crystals. It is also applicable to polycrystalline and amorphous bodies.The quasiplastically deformed crystal is geometrically described by an elastic metric tensor and by a lattice connexion, which is considered to be non-metric with respect to the elastic metric. The covariant derivative of the elastic metric tensor, based on the lattice connexion, is regarded as source-function of non-metric stresses. Source functions for thermal and magnetostrictive stresses are explicitly established.It is a well known fact that non-metric stresses may be included into the linear continuum theory of dislocations if the concept of quasidislocation-density is used. Generalizing these ideas, it is shown that, within non-linear continuum theory, in addition to quasidislocation-density the concept of quasidisclination-density is absolutely necessary. With the help of these quantities a complete analogy between non-metric stresses and stresses caused by crystal dislocations and crystal disclinations may be established. A unified non-linear theory for quasiplastic deformations, crystal dislocations and crystal disclinations is developed. It turns out that in general non-metric stresses cannot be compensated completely by dislocation movements.Zusammenfassung Im Festkörper führen inhomogene, quasiplastische Deformationen zu inneren Spannungen. Diese nichtmetrischen Spannungen werden für den stationären Fall im Rahmen einer nichtlinearen Kontinuumstheorie untersucht. Der Theorie liegt eine nichtmetrische, nichteuklidische Geometrie zugrunde. Die Theorie wird für Einkristalle entwickelt. Sie gilt aber auch für vielkristalline und für amorphe Körper.Der quasiplastisch verzerrte Kristall wird geometrisch mit Hilfe einer Gitterkonnexion und eines elastischen Metriktensors beschrieben, wobei die Gitterkonnexion nichtmetrisch ist bezüglich der elastischen Metrik. Die kovariante Ableitung des elastischen Metriktensors bezüglich der Gitterkonnexion ist die Quellenfunktion der nichtmetrischen Spannungen. — Die Quellenfunktionen der Temperaturspannungen und der magnetostriktiven Spannungen werden explizit angegeben.Es ist seit langem bekannt, daß die nichtmetrischen Spannungen im Rahmen einer linearen Theorie mit Hilfe des Begriffs Quasiversetzungsdichte in die Kontinuumstheorie der Versetzungen einbezogen werden können. Durch eine Verallgemeinerung dieser Gedankengänge wird gezeigt, daß in der nichtlinearen Kontinuumstheorie außer der Quasiversetzungsdichte auch eine Quasidisklinationsdichte eingeführt werden muß. Mit Hilfe dieser beiden Begriffe erreicht man erne vollkommene Analogie der nichtmetrischen Spannungen zu den von Kristallversetzungen und Kristalldisklinationen verursachten Spannungen. Es wird eine einheitliche, nichtlineare Kontinuumstheorie der quasiplastischen Deformationen, der Kristallversetzungen und der Kristalldisklinationen angegeben. Man kann zeigen, daß nichtmetrische Spannungen i. allg. durch Versetzungsbewegungen nicht vollständig abgebaut werden können. Vorgelegt von J. Meixner Herrn Prof. Dr. A. Seeger danke ich für die verständnisvolle Förderung dieser Arbeit. Herrn Dr. C. Teodosiu möchte ich für zahlreiche nützliche Diskussionen danken.
  相似文献   

19.
Effects of inertia, surface tension and gravity in the constant force stretching of isothermal cylindrical filaments of Newtonian, power-law and Maxwell-type fluids were analysed in Lagrangian coordinates. Solution for the purely gravitational extension of Newtonian fluid cylinder was found to be as simple as = 1 – C 3 (1 – ) where designates the cross sectional area, the Lagrangian distance and the time. Analytical solutions were also available for the case of inertialess Newtonian and power-law fluids.A first-order backward differencing scheme and minimal computer time were sufficient to numerically analyse the constant force extension of Maxwell-type fluids in the presence of inertia, gravity and surface tension. Effects of inertia, surface tension and gravity on the severity of neck down occurring at either end of the filament are summarized in diagrams. The present approach is valid on any other constitutive model as far as there is a numerical scheme to analyse thehomogeneous extension of a cylinder of that particular fluid.  相似文献   

20.
In this paper we develop the averaged form of the Stokes equations in terms of weighting functions. The analysis clearly indicates at what point one must choose a media-specific weighting function in order to achieve spatially smoothed transport equations. The form of the weighting function that produces the cellular average is derived, and some important geometrical theorems are presented.Roman Letters A interfacial area of the- interface associated with the local closure problem, m2 - A e area of entrances and exits for the-phase contained within the averaging system, m2 - A p surface area of a particle, m2 - d p 6V p/Ap, effective particle diameter, m - g gravity vector, m/s2 - I unit tensor - K m permeability tensor for the weighted average form of Darcy's law, m2 - L general characteristic length for volume averaged quantities, m - L p general characteristic length for volume averaged pressure, m - L characteristic length for the porosity, m - L v characteristic length for the volume averaged velocity, m - l characteristic length (pore scale) for the-phase - l i i=1, 2, 3 lattice vectors, m - (y) weighting function - m(–y) (y), convolution product weighting function - v special weighting function associated with the traditional averaging volume - m v special convolution product weighting function associated with the traditional averaging volume - m g general convolution product weighting function - m V unit cell convolution product weighting function - m C special convolution product weighting function for ordered media which produces the cellular average - m D special convolution product weighting function for disordered media - m M master convolution product weighting function for ordered and disordered media - n unit normal vector pointing from the-phase toward the-phase - p pressure in the-phase, N/m2 - pm superficial weighted average pressure, N/m2 - p m intrinsic weighted average pressure, N/m2 - p traditional intrinsic volume averaged pressure, N/m2 - p p p m , spatial deviation pressure, N/m2 - r 0 radius of a spherical averaging volume, m - r m support of the convolution product weighting function, m - r position vector, m - r position vector locating points in the-phase, m - V averaging volume, m3 - V volume of the-phase contained in the averaging volume, m3 - V cell volume of a unit cell, m3 - V velocity vector in the-phase, m/s - vm superficial weighted average velocity, m/s - v m intrinsic weighted average velocity, m/s - V volume of the-phase contained in the averaging volume, m3 - V p volume of a particle, m3 - v traditional superficial volume averaged velocity, m/s - v v p m spatial deviation velocity, m/s - x position vector locating the centroid of the averaging volume or the convolution product weighting function, m - y position vector relative to the centroid, m - y position vector locating points in the-phase relative to the centroid, m Greek Letters indicator function for the-phase - Dirac distribution associated with the- interface - V /V, volume average porosity - m m * . weighted average porosity - mass density of the-phase, kg/m3 - viscosity of the-phase, Ns/m2 - V /V, volume fraction of the-phase  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号