首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
通过精确设定不同的退火环境气压,实现对P3HT(Poly(3-hexylthiophene -2,5-diyl)与PCBM([6,6]-Phenyl C61 butyric acid methyl ester)体系中聚噻吩结晶度以及共混相分离程度的控制,并在此基础上制备了结构为ITO/PEDOT∶PSS/P3HT∶PCBM/Al的正型光伏器件。在允许的压强设定范围内,器件各项性能参数均随退火环境压强的增大表现出先升高后下降的变化规律,并统一于气压设定为1 500 mTorr时获得最大值。从活性层的紫外-可见(UV-Vis)吸收光谱中发现P3HT在510 nm吸收峰以及550和600 nm肩峰附近的吸收强度随退火气压升高而增大,在气压为1 500 mTorr时达到最高,吸收强度的提升源于聚合物分子π—π堆叠的增加。原子力显微镜(AFM)进一步分析结果表明,高气压环境(>1 000 mTorr)能够促进P3HT∶PCBM共混组分在退火过程中形成较大程度的相分离,而当环境压强合适时(1 500 mTorr)适度的相分离利于聚合物形成良好有序结晶,从而能够提升活性层内部载流子传输能力,保证较高的短路电流与填充因子,制备的器件也因此表现出良好的光伏性能,光电转化效率达到3.56%。  相似文献   

2.
In this research, we report a bulk heterojunction(BHJ) solar cell consisting of a ternary blend system. Poly(3-hexylthiophene) P3 HT is used as a donor and [6,6]-phenyl C61-butyric acid methylester(PCBM) plays the role of acceptor whereas vanadyl 2,9,16,23-tetraphenoxy-29 H, 31H-phthalocyanine(VOPc Ph O) is selected as an ambipolar transport material. The materials are selected and assembled in such a fashion that the generated charge carriers could efficiently be transported rightwards within the blend. The organic BHJ solar cells consist of ITO/PEDOT:PSS/ternary BHJ blend/Al structure. The power conversion efficiencies of the ITO/ PEDOT:PSS/P3HT:PCBM/Al and ITO/PEDOT:PSS/P3HT:PCBM:VOPcPhO/Al solar cells are found to be 2.3% and 3.4%, respectively.  相似文献   

3.
《Current Applied Physics》2010,10(4):985-989
In the polymer photovoltaic devices (PVDs), the performance of devices was strongly influenced by region-regularity, number average molecular weight and casting solvents of polymers. In this work, we fabricated p–n bulk-hetero-junction PVDs based on poly(3-hexylthiophene) (P3HT) and [6,6]-phenyl-C60-butyric acid methyl ester (PCBM) using various solvents such as chloroform (CF), chlorobenzene (CB), dichlorobenzene (DCB), and mixed solvent (CF/CB, CF/DCB). Thin film of active layer with P3HT/PCBM was prepared by spin coating and thermal annealing at 150 °C with fixed thickness about 110 nm by adjusting solution concentration. The crystalline morphology and layered phase for the active layer were studied by atomic force microscopy and X-ray diffraction, respectively. We investigated the performance of solar cells according to different morphology and crystallinity of active layer by various solvent and mixed solvent.  相似文献   

4.
Phase separation of the poly(3-hexylthiophene) (P3HT) and [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) active layer (ATL) was investigated by varying their relative ratio in the organic solar cells (OSCs). With the help of the UV/visible spectrophotometer, optical microscopy and scanning electron microscope, we found that the cluster of PCBM at the interface or surface was affected by Al cathode, the composition of the blends and thermal annealing. The disc-like shape crystals of PCBM substituted for the needle-like ones at higher PCBM compositions at the ATL/Al interface, which led to stronger contacts and bigger contact area. It could make short circuit current density increase, but may affect the blend morphology and result in parallel resistance and open circuit voltage decreased with the PCBM ratio increasing from 40 to 60%. The microstructure of the P3HT:PCBM ATL, determined by the composition dependent phase separation, supported the optimized performance of the OSCs with the composition of 40-50% PCBM.  相似文献   

5.
通过改变溶剂退火时的环境压强控制溶剂的蒸发速率,在不同压强下进行加压溶剂退火制备了基于聚-3己基噻吩:富勒烯衍生物(P3HT:PCBM)的体异质结聚合物太阳能电池。X射线衍射(XRD)、紫外-可见吸收光谱(UV-Vis)以及原子力显微镜(AFM)的测试结果表明,增大溶剂退火的环境气压改善了薄膜的结晶度,增强了有源层的光吸收,提高了P3HT和PCBM的相分离程度,更有利于激子的解离和载流子传输。与在常压下溶剂退火相比,在2.0 MPa压强下对有源层进行溶剂退火的器件的光电转换效率提高了29%,达到了3.69%。  相似文献   

6.
李畅  章婷  薛唯 《发光学报》2014,35(2):202-206
活性层的微观形貌在很大程度上决定了聚合物光伏器件的性能表现并依赖于制备工艺条件。为了改善薄膜内部分子排布结构并追求较高的器件光电转化效率,采用溶液法制备了基于P3HT:PCBM的聚合物太阳能电池(器件结构:ITO/PEDOT:PSS/P3HT:PCBM/Al),通过改变器件制备流程中活性层退火处理工艺,研究了热退火、溶剂退火以及溶剂预处理结合热处理的双重退火对聚合物太阳电池性能的影响。研究发现:双重退火的光伏器件的各项性能参数均优于单一退火处理器件,获得了3.25%的光电转化效率。原子力显微镜及X射线衍射仪的表征结果进一步证明:双重退火处理能够在促进聚合物给体良好有序结晶的同时保证共混组分适度地相分离,从而有利于光生激子的解离以及载流子的传输。  相似文献   

7.
Degradation and short shelf life have been observed experimentally in poly(3-hexylthiophene) (P3HT): 6,6-phenyl C61-butyric acid methyl ester (PCBM) based blend solar cells. Both dark and illuminated current–voltage characteristics could be explained quantitatively with a proposed single model for a typical degraded organic solar cell-glass/ITO/PEDOT:PSS/P3HT:PCBM/Al. It has been found that surface state density, interface thickness, tunneling coefficient and occupation probabilities of the interface states becomes important with the passage of time. To look into the problem the activity at ITO/PEDOT:PSS and P3HT:PCBM/Al interfaces are studied using realistic values of the interfaces. The experimental J–V characteristics is well explained with the inclusion of tunneling current through these surface states and becomes the dominant current component for the degraded cell. It is also found that surface state density increases to 1012–1013 cm−2 eV−1, which has been verified with CV measurements and also is in agreement with our proposed model for BHJ solar cell after 150 h of fabrication.  相似文献   

8.
Zhou JP  Chen XH  Xu Z 《光谱学与光谱分析》2011,31(10):2684-2687
P3HT:PCBM薄膜的快速和缓慢成膜过程能显著的改变异质结聚合物太阳能电池性能.通过调节旋转时间以及薄膜退火前的间隔时间,研究了P3HT:PCBM混合薄膜缓慢生长所需最佳时间.结果表明,在转速800 r·min-1下旋涂薄膜,经过50~80 s的旋涂,接着放置样品薄膜30 min以上,然后再对薄膜进行退火处理,电池效...  相似文献   

9.
为研究掺杂石墨烯量子点(GQDs)对聚合物电池的影响,采用溶剂热法制备了GQDs,掺杂到聚3-己基噻吩和富勒烯衍生物(P3HT∶PCBM)中作光敏层制备了聚合物太阳能电池。掺杂不同浓度的GQDs后,聚合物电池的开路电压和填充因子都比未掺杂器件高。GQDs掺杂质量分数为0.15%时,形成的掺杂薄膜平整、均匀,填充因子提高了17.42%。GQDs经还原后,随还原时间的延长,填充因子FF增大。到45 min时,电池的FF基本稳定,从31.57%提高至40.80%,提高了29.24%。退火后,获得了最佳的掺杂GQDs的聚合物太阳能电池,开路电压Voc为0.54 V,填充因子FF为55.56%,光电转换效率为0.75%。  相似文献   

10.
The integration of semiconductor nanoparticles (NPs) into a polymeric matrix has the potential to enhance the performance of polymer-based solar cells taking advantage of the physical properties of NPs and polymers. We synthesize a new class of CdS-NPs-based active layer employing a low-cost and low temperature route compatible with large-scale device manufacturing. Our approach is based on the controlled in situ thermal decomposition of a cadmium thiolate precursor in poly(3-hexylthiophene) (P3HT). The casted P3HT:precursor solid foils were heated up from 200 to 300 °C to allow the precursor decomposition and the CdS-NP formation within the polymer matrix. The CdS-NP growth was controlled by varying the annealing temperature. The polymer:precursor weight ratio was also varied to investigate the effects of increasing the NP volume fraction on the solar cell performances. The optical properties were studied by using UV–Vis absorption and photoluminescence (PL) spectroscopy at room temperature. To investigate the photocurrent response of P3HT:CdS nanocomposites, ITO/P3HT:CdS/Al solar cell devices were realized. We measured the external quantum efficiency (EQE) as a function of the wavelength. The photovoltaic response of the devices containing CdS-NPs showed a variation compared with the devices with P3HT only. By changing the annealing temperature the EQE is enhanced in the 400–600 nm spectral region. By increasing the NPs volume fraction remarkable changes in the EQE spectra were observed. The data are discussed also in relation to morphological features of the interfaces studied by Focused Ion Beam technique.  相似文献   

11.
An in situ measurement setup is established to investigate the photoinduced degradation effects in a controllable inert gas ambient environment for the two different microstructures of poly(3-hexylthiophene)(P3HT) and [6,6]-phenyl-C61-butyricacid methyl ester(PCBM) bulk-heterojunction organic solar cells. The two devices are fabricated with the solvent vapor drying process followed by a thermal annealing(vapor drying device) and only a normal thermal annealing process(control device), respectively. Their power conversion efficiencies(PCEs) and aging features are compared. Their different degradation behaviors in light absorption are confirmed. In addition, irradiation-induced changes in both nanostructure and surface morphology of the P3HT:PCBM blend films treated with two different fabrication processes are observed through scanning electron microscopy and atomic force microscopy. Aggregated bulbs are observed at the surfaces for control devices after light irradiation for 50 h, while the vapor drying devices exhibit smooth film surfaces, and the corresponding device features are not easy to degrade under the aging measurement. Thus the devices having solvent vapor drying and thermal annealing show better device stabilities than those having only the thermal annealing process.  相似文献   

12.
为了提高太阳能电池的性能,研究磁性纳米粒子在外加磁场的作用下对聚合物太阳能电池有源层P3HT:PCBM成膜及太阳能电池性能的影响。本文采用热分解法制备了磁性Fe3O4纳米粒子,将不同质量分数的Fe3O4纳米粒子掺入到P3HT:PCBM溶液中,旋涂后在外加磁场的作用下自组成膜。通过TEM、XRD对制备的Fe3O4纳米粒子进行表征,并利用偏光显微镜、原子力显微镜对成膜质量进行探究。结果表明,采用热分解法制备的Fe3O4纳米粒子直径在10 nm左右,在外加磁场作用下,Fe3O4纳米粒子对成膜有一定的调控作用。当Fe3O4纳米粒子掺杂质量分数为1%时,太阳能电池器件的开路电压增加3.77%,短路电流增加24.93%,光电转换效率提高7.82%。  相似文献   

13.
制备了一种有机铅卤钙钛矿-有机本体异质结杂化串联太阳能电池。采用紫外可见吸收光谱、原子力显微镜对薄膜形貌进行了表征。结果表明:有机本体异质结层可以有效改善钙钛矿的表面形貌, 增强了可见光的吸收。优化后的串联结构电池的短路电流可达19.14mA/cm2, 开路电压为0.76V, 光电转换效率达到了6.54%。钙钛矿电池和有机本体异质结电池串联结构可以同时提高短路电流及填充因子, 二者具有较好的相容性和协同作用。  相似文献   

14.
We present series of strategies to enhance efficiency of ZnO nanorods based organic/inorganic solar cells with spin-coated P3HT:PCBM blend as active layer. The performance of the as-fabricated devices is improved by controlling the size of ZnO nanorods, annealing temperature and time of active layer, surface modification of ZnO with PSBTBT. Optimized device of ITO/ZnO nanorod/P3HT:PCBM/Ag device with PSBTBT surface modification and air exposure reaches an efficiency of 2.02% with a short-circuit current density, open-circuit voltage and fill factor of 13.23 mA cm−2, 0.547 V and 28%, respectively, under AM 1.5 irradiation of 100 mW m−2, the increase in efficiency is 7-fold of the PSBTBT surface modified ITO/ZnO nanorods/P3HT:PCBM/Ag device compared with the unmodified one, which is own to the increased interface contact, expanded light absorption, tailored band alignment attributed to PSBTBT. We found exposure to air and surface modification is crucial to improve the device performance, and we discussed the mechanisms that affect the performance of the devices in detail.  相似文献   

15.
邓丽娟  赵谡玲  徐征  赵玲  王林 《物理学报》2016,65(7):78801-078801
将窄带隙聚合物PTB7-Th作为第三种物质掺入到P3HT:PCBM中制备了双给体结构的三元聚合物太阳能电池, 并且通过改变PTB7-Th的浓度来研究PTB7-Th对器件性能的影响. 研究发现, 掺入PTB7-Th后, 聚合物太阳能电池的短路电流和填充因子同时获得了提高, 使器件的光电转换效率得到了改善. 进一步分析表明, PTB7-Th的加入能够拓宽活性层的吸收光谱, 增加活性层吸收的光子数目, 有利于短路电流的提升. PTB7-Th与P3HT之间以电荷转移的形式相互作用, 这种作用方式有利于激子的解离, 从而使器件的填充因子得到了提高.  相似文献   

16.
Because of the restriction of low energy difference between the highest occupied molecular orbital of P3HT and the lowest unoccupied molecular orbital of PCBM, the obtained power conversion efficiency of P3HT:PCBM solar cells is merely half the ideal value. In this paper, we have fabricated bulk heterojunction solar cells based on PCDTBT and PC71BM (structure: ITO/PEDOT:PSS/PCDTBT:PC71BM/LiF (0.8 nm)/Al (80 nm)). In order to optimize the performance of the cells, the weight ratio of PCDTBT to PC71BM, the thickness of the active layer and thermal annealing are investigated. When the weight ratio of PCDTBT to PC71BM is 1:2 and the thickness of the active layer is 73 nm, a short circuit current density of 10.36 mA/cm2, an open-circuit voltage of 0.91 V, a fill factor of 55.06 % and a power conversion efficiency of 5.19 % can be achieved. Moreover, we probe the influence of annealing temperature on the performance of organic solar cells, and find that the thermal treatment methodology (apart from the removal of trapped casting solvent) is of limited benefit.  相似文献   

17.
The inverted polymer:fullerene solar cells with structure of ITO/TiO2/P3HT:PCBM/MoO3/Al have been fabricated, where P3HT and PCBM stand for poly (3-hexylthiophene) and [6,6]-phenyl C61-butyric acid methyl ester, respectively. It is discovered that the P3HT:PCBM blend film manipulated into the improved stratification structure, characterized as P3HT crystallite-rich zone close to the top surface and PCBM constituent-rich zone adjacent to the bottom surface, can offer nearly the same power conversion efficiency of solar cell, compared to the one grown into the bulk heterojunction structure, characterized as the bicontinuous interpenetrating network of P3HT and PCBM. We provide an alternative insight to the morphology control of inverted polymer:fullerene solar cells.  相似文献   

18.
In this study, we explored the ability of a preheated solvent (methanol) to induce characteristic changes at the organic active layer/metal interface, thereby improving the performance of fabricated organic photovoltaic (OPV) cells composed of poly(3-hexylthiopene) (P3HT) and a [6,6]-phenyl-C71-butyric acid methyl ester (PCBM) photoactive blend. Our results demonstrate that exposure to methanol (at room temperature, or preheated at 45 °C or 65 °C) improves the performance of the fabricated OPV cells. After preheated methanol exposure, the P3HT:PCBM thin films were tested for crystallinity, morphology, mobility, and photovoltaic characteristics. Our results revealed that use of the preheated solvent on the organic active layer significantly influences the micro/nano scale morphology and phase segregation of the P3HT:PCBM thin films, as well as the charge carrier mobility. It is hypothesized that the side chain ordering of P3HT and redistribution of PCBM could be results of the modified active layer. Consequently, OPV cells modified with the methanol preheated at 65 °C exhibited a power conversion efficiency (PCE) of 3.36%, with open-circuit voltage of 0.59 V, short-circuit current density of 13.83 mA/cm2, and fill-factor of 0.41. In contrast, the unmodified P3HT:PCBM thin film (without methanol exposure) showed a PCE of only 2.13%.  相似文献   

19.
We show that the morphology of polymer-based solar cells substantially changes after annealing using small angle neutron scattering. Phenyl-C61-butyric acid methyl ester (PCBM) is found reasonably well dispersed within the poly(3-hexylthiophene) (P3HT) rich phase after initial processing (spin coating). However, the PCBM structure coarsens after annealing, clearly evidenced by the increase in scattering intensity at a small wave vector. The change in morphology at the nanoscale is related to improved device performance and the simultaneous, contradictory, increase in photoluminescence.  相似文献   

20.
We report the fabrication and characterization of composite nanoparticles consisting of a conducting polymer, poly-3-hexylthiophene (P3HT), doped with varying amounts of [6,6]-phenyl C61-butyric acid methyl ester (PCBM), a material blend that is commonly applied in bulk heterojunction organic photovoltaic devices (OPVs). Single particle spectroscopy (SPS) studies, where nanoparticles are studied one particle at a time, reveal that these nanoparticles have spectroscopic characteristics consistent with the existence of two types of crystalline nanodomains, one with a higher energy emission at 660 nm and one with a lower energy emission at 720 nm. In addition, the occurrence of emission at lower peak energy increases with increasing PCBM doping levels, and the intensity of the lower energy peak emission increases with respect to the higher energy peak emission as well. These data reveal a PCBM concentration dependent formation of two types of P3HT crystalline nanodomains in P3HT/PCBM composite nanoparticles, where the lower energy crystal structure becomes more favored with higher PCBM concentration. This work provides a molecular scale insight in the correlation between changes in morphology of conjugated polymer materials with different weight percentages of fullerene dopants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号