首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The nature of the NOx species produced during the adsorption of NO at room temperature and during its coadsorption with oxygen on LaMnAl11O19 sample with magnetoplumbite structure obtained by a sol-gel process has been investigated by means of in situ FT-IR spectroscopy. The adsorption of NO leads to formation of anionic nitrosyls and/or cis-hyponitrite ions and reveals the presence of coordinatively unsaturated Mn3+ ions. Upon NO/O2 adsorption at room temperature various nitro-nitrato structures are observed. The nitro-nitrato species produced with the participation of electrophilic oxygen species decompose at 350 °C directly to N2 and O2. No NO decomposition is observed in absence of molecular oxygen. The adsorbed nitro-nitrato species are inert towards the interaction with methane and block the active sites (Mn3+ ions) for its oxidation. Noticeable oxidation of the methane on the NOx-precovered sample is observed at temperatures higher than 350 °C due to the liberation of the active sites as a result of decomposition of the surface nitro-nitrato species. Mechanism explaining the promoting effect of the molecular oxygen in the NO decomposition is proposed.  相似文献   

2.
Oxidation of Cu3Au(1 1 0) using a hyperthermal O2 molecular beam (HOMB) was investigated by X-ray photoemission spectroscopy in conjunction with a synchrotron light source. From the incident energy dependence of the O-uptake curve, the precursor-mediated dissociative adsorption occurs, where the trapped O2 molecule can migrate and dissociate at the lower activation-barrier sites, dominantly at thermal O2 exposures. Dissociative adsorption of O2 on Cu3Au(1 1 0) is as effective at the thermal O2 exposure as on Cu(1 1 0). On the other hand, at the incident energies of HOMB where the direct dissociative adsorption is dominant, it was determined that the dissociative adsorption of O2 implies a higher activation barrier and therefore less reactivity due to the Au alloying in comparison with the HOMB oxidation of Cu(1 1 0). The dissociative adsorption progresses with the Cu segregation on Cu3Au(1 1 0) similarly as on Cu3Au(1 0 0). The growth of Cu2O for 2 eV HOMB suggests that the diffusion of Cu atoms also contribute to the oxidation process through the open face, which makes the difference from Cu3Au(1 0 0).  相似文献   

3.
《Surface science》1993,291(3):L763-L767
Geometric and electronic structures of dimers on the Si(001)-2 × 1 reconstructed surfaces before and after O2 adsorption have been investigated with an ab initio molecular orbital (MO) calculation at the Hartree-Fock level. The theoretically predicted electron tunneling current in the dimer before and after O2 adsorption has strongly suggested that the O2-adsorbed dimer on clean Si(001) surfaces is observed as dark in the scanning tunneling microscope (STM) images. The dark spot images which have so far been recognized to be a dimer vacancy type defect could be due to the O2 adsorption in parallel to a Si dimer.  相似文献   

4.
The adsorption behaviors of V2O5 nanowires on binary mixed self-assembled monolayers (SAMs) were investigated with variation of the mixing ratio of two differently terminated thiolates on Au. Hydroxyl-covered V2O5 nanowires showed a preferential adsorption on amine (NH2)-terminated thiolates over methyl (CH3)-terminated ones. However, on the binary mixed SAM of NH2- and CH3-terminated thiols, the adsorption behavior did not follow a simple expectation based upon the electrostatic interaction. The total number of adsorbed V2O5 nanowires increased with the mole fraction of NH2-terminated thiolates up to χNH2∼0.5, then it decreased with further increase of χNH2. The height distribution of adsorbed nanowires showed that the relative portion of the agglomerated wires thicker than 3.5 nm to individual wires thinner than 3.5 nm increased up to χNH2∼0.75 and then it decreased with further increase of χNH2. The dispersion of molecules with polar-functional groups as well as the molecular ordering of mixed SAMs is attributed to such adsorption behaviors of V2O5 nanowires.  相似文献   

5.
The adsorption and desorption of O2 on a Pt(111) surface have been studied using molecular beam/surface scattering techniques, in combination with AES and LEED for surface characterization. Dissociative adsorption occurs with an initial sticking probability which decreases from 0.06 at 300 K to 0.025 at 600 K. These results indicate that adsorption occurs through a weakly-held state, which is also supported by a diffuse fraction seen in the angular distribution of scattered O2 flux. Predominately specular scattering, however, indicates that failure to stick is largely related to failure to accommodate in the molecular adsorption state. Thermal desorption results can be fit by a desorption rate constant with pre-exponential νd = 2.4 × 10?2 cm2 s?1 and activation energy ED which decreases from 51 to 42 kcal/mole?1 with increasing coverage. A forward peaking of the angular distribution of desorbing O2 flux suggests that part of the adsorbed oxygen atoms combine and are ejected from the surface without fully accomodating in the molecular adsorption state. A slight dependance of the dissociative sticking probability upon the angle of beam incidence further supports this contention.  相似文献   

6.
胡自玉  杨宇  孙博  张平  汪文川  邵晓红 《中国物理 B》2012,21(1):16801-016801
Using first-principles calculations, we systematically study the dissociations of O2 molecules on different ultrathin Pb(111) films. According to our previous work revealing the molecular adsorption precursor states for O2, we further explore why there are two nearly degenerate adsorption states on Pb(111) ultrathin films, but no precursor adsorption states existing at all on Mg(0001) and Al(111) surfaces. The reason is concluded to be the different surface electronic structures. For the O2 dissociation, we consider both the reaction channels from gas-like and molecularly adsorbed O2 molecules. We find that the energy barrier for O2 dissociation from the molecular adsorption precursor states is always smaller than that from O2 gas. The most energetically favorable dissociation process is found to be the same on different Pb(111) films, and the energy barriers are found to be influenced by the quantum size effects of Pb(111) films.  相似文献   

7.
《Current Applied Physics》2018,18(12):1528-1533
The trajectories of adsorption and dissociation process of O2 on the Al (111) surface were studied by the spin-polarized ab initio molecular dynamics method, and the adsorption activation energy was clarified by the NEB method with hybrid functionals. Three typical dissociation trajectories were found through simulation of O2 molecule at different initial positions. When vertically approaches to the Al surface, the O2 molecule tends to rotate, and the activation energy is 0.66eV. If O2 molecule does not rotate, the activation energy will increase to 1.43 eV, and it makes the O atom enter the Al sublayer eventually. When the O2 molecules parallel approach to the Al surface, there is no activation energy, due to the huge energy released during the adsorption process.  相似文献   

8.
The structural and electronic properties of O2 molecular adsorption on the Tri-s-triazine-based graphitic carbon nitride (g-C3N4) surface was investigated through first principles calculation based on density functional theory (DFT). Here, we show that the O2 molecule is merely physisorbed on the surface of g-C3N4 through the interaction of its lowest unoccupied molecular orbital (LUMO) with the orbitals of the 2-coordinated nitrogen atoms of the surface. Though physisorbed, a stronger molecular adsorption was found as compared with its adsorption on pure graphene sheets. We also found that the O2 molecule gains very small amount of electron charges from the surface, which, together with a stronger adsorption energy, may attribute to a more effective oxygen reduction reaction (ORR) site as compared with pure graphene. These results would then be important for reactions with intermediate surface oxidation step in a carbon and nitrogen-based catalyst, and could lead to realization of an effective materials design for surface application, e.g. towards a more efficient catalyst for the ORR on the cathode side of the proton exchange membrane fuel cell (PEMFC).  相似文献   

9.
The water-surface interaction is a research target of great importance for a broad spectrum of technological applications and fundamental scientific disciplines. In the present study, a comparative analysis is performed to clarify the structural and diffusion properties of water on a number of oxide surfaces. Based on the molecular dynamics (MD) simulation method, the water-surface interaction mechanism was investigated for the oxide materials TiO2 (anatase), Al2O3 (corundum), and Fe2O3 (hematite). A comparison of the water-TiO2 interaction with the water-Al2O3 and water-Fe2O3 systems demonstrates the specificity of the adsorption and layer formation on the atomic/molecular level scale. The obtained MD analysis data point to a considerable enhancement of water-TiO2 surface adsorption and a relatively high density distribution profile near the surface. The novel data on water structure and diffusion on oxide surfaces are discussed from the point of view of possible material innovation and design.  相似文献   

10.
The adsorption and dissociation of O2 on CuCl(1 1 1) surface have been systematically studied by the density functional theory (DFT) slab calculations. Different kinds of possible modes of atomic O and molecular O2 adsorbed on CuCl(1 1 1) surface and possible dissociation pathways are identified, and the optimized geometry, adsorption energy, vibrational frequency and Mulliken charge are obtained. The calculated results show that the favorable adsorption occurs at hollow site for O atom, and molecular O2 lying flatly on the surface with one O atom binding with top Cu atom is the most stable adsorption configuration. The O-O stretching vibrational frequencies are significantly red-shifted, and the charges transferred from CuCl to oxygen. Upon O2 adsorption, the oxygen species adsorbed on CuCl(1 1 1) surface mainly shows the characteristic of the superoxo (O2), which primarily contributes to improving the catalytic activity of CuCl, meanwhile, a small quantity of O2 dissociation into atomic O also occur, which need to overcome very large activation barrier. Our results can provide some microscopic information for the catalytic mechanism of DMC synthesis over CuCl catalyst from oxidative carbonylation of methanol.  相似文献   

11.
We report a study on the oxidation process induced by a hyperthermal oxygen molecular beam (HOMB) on Cu(110) using X-ray photoemission spectroscopy in conjunction with a synchrotron radiation source. The oxidation process induced by energetic O2 beams on Cu(110), depending on the azimuthal angle of incidence, suggests that the –Cu–O– added row structure has a role in inhibiting adsorption as a steric obstacle for incident O2 molecules.  相似文献   

12.
First-principles calculations based on density functional theory (DFT) have been performed to investigate the adsorption structures and electronic properties for O2 on the α-U(001) surface. It was found that O2 tends to dissociate with significant energetic preference compared to molecular adsorption. When approaching the surface perpendicularly along top site, the O2 adsorbates were found to remain as molecule on the surface. The density of states of the system showed strong hybridization features for O2p, U6d and U5f states in the case of dissociative adsorption which is weaker for molecular adsorption. Further electronic properties analysis demonstrated that the bonding character of U–O bond is related to the symmetry of the adsorption site. Top site configuration showed stronger covalent component for the U–O bond, while the ionic character was found to be more obvious for hollow site adsorption.  相似文献   

13.
Fe-doped mesoporous (Fe-m-Ta2O5) and non-porous bulk Ta2O5 (Fe-s-Ta2O5) were prepared with sol-gel and solid reaction methods, respectively. The physicochemical properties of the prepared materials were subjected to a combination of characterization, including transmission electron microscopy (TEM), Raman spectra, UV-vis spectra and N2 adsorption. It was demonstrated that Fe could be doped into the matrix of Ta2O5 by both the methods. The photocatalytic hydrogen production over two kinds of photocatalysts from an aqueous methanol solution was investigated. Comparative studies showed that the effects of Fe doping on the photocatalytic properties of the materials depended heavily on the morphology and crystallinity of the photocatalyst. The reason for this dependence has been discussed in detail.  相似文献   

14.
Iridium adsorption on γ-Al2O3 (001) surface has been studied using the ab initio calculation method and the electronic structures of the bare and the Ir adsorbed γ-Al2O3 (001) surfaces have been analyzed. By modeling different adsorption sites, one can conclude that the energetically most favorable sites for the Ir are the top sites of the O atoms at the γ-Al2O3 (001) surface terminated with octahedral Al. Charge redistribution around the Ir atom adsorbed on the surface improves the activity of the Ir atom as a catalyst.  相似文献   

15.
We investigate the side-on interaction of O2 with manganese-porphyrin (MnP) and iron-porphyrin (FeP) using ab initio density functional calculations. The MnP–O2 adduct takes a side-on configuration in the sextet state while the FeP–O2 adduct takes it in the singlet state. The O–O bond of the side-on FeP–O2 is weaker than that of the side-on MnP–O2 because of more reactive singlet O2 for the adsorption on the substrate. Moreover, the O2 dissociation barrier on FeP is lower than that on MnP via the side-on O2 adduct. It is energetically comparable to that of the well-known platinum catalyst.  相似文献   

16.
The influence of the framework SiO2/Al2O3 ratio from 2.0 to 10.0 of commercial faujasite-type CaX/CaY zeolite produced by Mitsubishi Heavy Industries Ltd. (MHI) on the water adsorption and desorption characteristics was investigated. Not only the change in electronegativity of the zeolite but the change in pore-size distribution of the zeolite affects the water adsorption and desorption characteristics of the zeolite. We found great differences in isotherms of water between CaY7.0 (SiO2/Al2O3=7.0) and CaY10.0. The differences are mainly caused by the considerable change in pore-size distribution. A step-wise variation was observed in the desorption isotherm of water from CaY10.0 at approximately P/P0=0.4. This is due to the pore distribution of CaY10.0 being relatively poor in smaller micropores in zeolite structure, since a similar phenomenon is observed in the case of argon adsorption on CaY10.0. In the experiments using a fixed bed, an apparent dependency of HTO dehydration ratio on the flow rate of the purge gas is measured with the CaY10.0 zeolite, while the water desorption from other tested CaX/CaY zeolite is independent of the flow rate of helium purge gas. This indicates that the transfer step of water diffusion through a laminar film appeared as one of the rate-controlling steps in the water desorption from CaY10.0.  相似文献   

17.
In the present paper, the catalytic role of Ag in the oxygen adsorption of LaMnO3(0 0 1) surface has been theoretically investigated using first-principles calculations based on the density functional theory (DFT) and pseudopotential method. The O2 adsorption energy is larger for the vertical adsorption and the covalent bond was formed between O2 molecule and surface Mn. The calculation of electronic properties of interaction between Ag atom and LaMnO3(0 0 1) surface demonstrates that the most stable position for Ag adsorption is hollow site. The O2 adsorption energy dramatically increased from 0.298 eV to 1.108 eV due to Ag pre-adsorbed. It is Ag pre-adsorbed that facilitates O2 adsorption on surface. The bond length and bond population of O2 molecule indicate that Ag atom facilitates O2 molecule dissociative adsorption. The Ag atom strengthens LaMnO3(0 0 1) substrate activity and activity center was formed on surface, which enhances the electrocatalytic activity of LaMnO3 as solid oxide fuel cells cathode material at low temperature.  相似文献   

18.
At 300 K, an amorphous Al-oxide film is formed on NiAl(001) upon oxygen adsorption. Annealing of the oxygen-saturated NiAl(001) surface to 1200 K leads to the formation of thin well-ordered θ-Al2O3 films. At 300 K, and low-exposure oxygen atoms are chemisorbed on CoGa(001) on defects and on step edges of the terraces. For higher exposure up to saturation, the adsorption of oxygen leads to the formation of an amorphous Ga-oxide film. The EEL spectrum of the amorphous film exhibits two losses at ≈400 and 690 cm-1. After annealing the amorphous Ga-oxide films to 550 K thin, well-ordered β-Ga2O3 films are formed on top of the CoGa(001) surface. The EEL spectrum of the β-Ga2O3 films show strong Fuchs-Kliewer (FK) modes at 305, 455, 645, and 785 cm-1. The β-Ga2O3 films are well ordered and show (2×1) LEED pattern with two domains, oriented perpendicular to each other. The STM study confirms the two domains structure and allows the determination of the two-dimensional lattice parameters of β-Ga2O3. The vibrational properties and the structure of β-Ga2O3 on CoGa(001) and θ-Al2O3 on NiAl(001) are very similar. Ammonia adsorption at 80 K on NiAl(111) and NiAl(001) and subsequent thermal decomposition at elevated temperatures leads to the formation of AlN. Well-ordered and homogeneous AlN thin films can be prepared by several cycles of ammonia adsorption and annealing to 1250 K. The films render a distinct LEED pattern with hexagonal [AlN/NiAl(111)] or pseudo-twelve-fold [AlN/NiAl(001)] symmetry. The lattice constant of the grown AlN film is determined to be aAlN= 3.11 Å. EEL spectra of AlN films show a FK phonon at 865 cm-1. The electronic gap is determined to be Eg= 6.1±0.2 eV. GaN films are prepared by using the same procedure on the (001) and (111) surfaces of CoGa. The films are characterized by a FK phonon at 695 cm-1 and an electronic band gap Eg= 3.5±0.2 eV. NO adsorption at 75 K on NiAl(001) and subsequent annealing to 1200 K leads to the formation of aluminium oxynitride (AlON). An oxygen to nitrogen atomic ratio of ≈2:1 was estimated from the analysis of AES spectra. The AlON films shows a distinct (2×1) LEED pattern and the EEL spectrum exhibits characteristic Fuchs-Kliewer modes. The energy gap is determined to be Eg= 6.6±0.2 eV. The structure of the AlON film is derived from that of θ-Al2O3 formed on NiAl(001). Received: 21 March 1997/Accepted: 12 August 1997  相似文献   

19.
We showed in a recent density functional study that small palladium cluster on a MgO surface with F-centers can be oxidized to epitaxial PdxOy nano-oxides below room temperature [1]. Here, we employ density functional theory in order to explore different methods for an experimental verification of the PdxOy formation. The electronic density of states (DOS) of bare, O2-decorated and of oxidized palladium cluster was calculated. For many cluster sizes a clear difference in the DOS could be observed allowing for a detection of the oxidation with surface sensitive spectroscopic methods. In addition, adsorption sites and stretch frequencies of a single CO molecule on bare and oxidized Pd4 clusters were calculated. While CO prefers hollow sites on Pd4, top adsorption sites are found for Pd4O2. Markedly different CO stretch frequencies indicate a possible discrimination of bare clusters and oxides by Fourier transform infrared spectroscopy.  相似文献   

20.
B-Fe3O4@C core–shell composites were synthesized via one-pot hydrothermal carbonization (HTC) process and used as an adsorbent for the removal of methylene blue (MB) from aqueous solution. By using sodium borate as the catalyst, the hydrothermal carbonization process of B-Fe3O4@C core–shell composites was optimized and a higher surface area was obtained. The adsorbent was characterized by XRD, Raman spectra, SEM, TEM and N2 adsorption/desorption isotherms. We studied the dye adsorption process at different conditions and analyzed the data by employing the Langmuir and Freundlich models, and the equilibrium data fitted well with both models. Kinetic analyses were conducted by using the Lagergren pseudo-first-order and pseudo-second-order model and the results showed that the adsorption process was more consistent with the pseudo-second-order kinetics. To better understand the dye adsorption process from the thermodynamics perspective, we also calculated ΔHο, ΔSο, ΔGο and Ea, the results suggesting that the MB adsorption process was physisorption endothermic process, and spontaneous at room temperature. The as-synthesized B-Fe3O4@C showing high magnetic sensitivity provides a facile and efficient way to recycle from aqueous solution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号