首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
Non-invasive methods with potential for diagnosis of lung diseases gain increasing interest. Within the present study the exhaled breath of 132 persons (97 Chronic obstructive pulmonary disease (COPD) patients [35 COPD without lung cancer, 62 COPD with lung cancer] and 35 healthy volunteers) was investigated using an Ion Mobility Spectrometer (IMS) coupled to a Multi-Capillary Column (MCC) without any pre-separation or pre-enrichment. One hundred four different peaks were considered within the IMS-Chromatograms of the 10 mL breath samples of both groups. A principal component analysis (PCA) of these 104 peaks identified a single analyte, that allowed a separation of the healthy persons and the COPD patients (with and without lung cancer). The sensitivity obtained was 60%, the specificity 91%, the positive predictive value 95%. The peak was characterized as cyclohexanone (CAS 108-94-1). Subsequent studies must validate the identity of the peak used for separation of the two groups with a greater population and external standards. Breath gas analysis using ion mobility spectrometry offers a chance of separating healthy persons and COPD patients using a single analyte at a defined concentration.  相似文献   

2.
COPD is a disease characterised by a chronic inflammation of the airways and a not fully reversible airway obstruction. The spirometry is considered as gold-standard to diagnose the disease and to grade its severity. In this study we used the methodology of Ion Mobility Spectometry in order to detect Volatile Organic Compounds (VOCs) in exhaled breath of patients with COPD. The purpose of this study was to investigate if the VOCs detected in patients with COPD were different from the VOCs detected in exhaled breath of healthy controls. 13 COPD patients and 33 healthy controls were included in the study. Breath samples were collected via a side-steam Teflon tube and directly measured by an ion mobility spectrometer coupled to a multi capillary column (MCC/IMS). One peak was identified only in the patients group compared to the healthy control group. Consequently, the analysis of exhaled breath could be a useful tool to diagnose COPD.  相似文献   

3.
The human breath contains indicators of human health and delivers information about different metabolism processes of the body. The detection and attribution of these markers provide the possibility for new, non-invasive diagnostic methods. In the recent study, ion mobility spectrometers are used to detect different volatile organic metabolites in human breath directly. By coupling multi-capillary columns using ion mobility spectrometers detection limits down to the ng/L and pg/L range are achieved. The sampling procedure of human breath as well as the detection of different volatiles in human breath are described in detail. Reduced mobilities and detection limits for different analytes occurring in human breath are reported. In addition, spectra of exhaled air using ion mobility spectrometers obtained without any pre-concentration are presented and discussed in detail. Finally, the potential use of IMS with respect to lung infection diseases will be considered.  相似文献   

4.
A correlation analysis of peaks found in IMS-Chromatograms was carried out to show the potential of the method in clinical applications. As an example, the data of exhaled breath of patients suffering infections of Pseudomonas were compared to healthy non-smokers. Using a rank sum calculation and providing a correlation table of all peaks found, delivers the basis for visualisation of highest ranked analytes. In addition, a consideration of positive and negative correlated peaks could support sub-grouping, if present. A set of signals could be found for discriminating the two groups of patients using MCC-IMS. Investigations of exhaled breath using ion mobility spectrometry seems to provide a promising means for the non-invasive identification of patients which are colonized or infected with bacteria such as Pseudomonas aeruginosa.  相似文献   

5.
Detection of special disease markers in exhaled breath is a method becoming more and more relevant in medical diagnostic. The test environment plays a big role in the analysis of exhaled air when using ion mobility spectrometry (IMS). Environmental contaminants appear also in exhaled air of test persons, potentially even in other forms then in the ambient air. Different ways to deal with these environmental factors will be discussed and our method of choice will be presented. It was possible to identify specific fingerprints for dedicated features of probands as well as for specific environmental pollution. By using statistical evaluation it was also possible to identify characteristic features of probands notwithstanding the environmental burden for correct assignment into specific groups, reaching correct classification rates above 0.85.  相似文献   

6.
Diseases of the lung, e. g. chronic obstructive pulmonary disease (COPD), interstitial lung diseases, bronchiectasis or cystic fibrosis, often lead to recurrent severe respiratory infections that cause exacerbations of the underlying disease. These acute or chronic inflammatory processes can result in a progressive destruction of the lung and in an ongoing decline in lung function. Therefore longer inpatient stays for intravenous antibiotic treatment are necessary and the quality of life in these patients is severely limited. A rapid detection of infectious agents in human lungs is often crucial, because the choice of the appropriate therapeutic regime depends at first on the identification of the infecting species. Standard methods for detection and identification are either time consuming, of low sensitivity or expensive. It is known that bacteria, and also mitosporic fungi, produce volatile organic compounds (VOCs) that can be detected in exhaled breath by ion mobility spectrometry (IMS), were a distinct detection of a specific VOC is related to a “peak”. We investigated, whether the detection and characterisation of VOCs by Multi-capillary column coupled to IMS in exhaled breath of patients whose airways are either infected or colonized by Pseudomonas aeruginosa compared to healthy non-smoker controls is capable of identifying those infectious agents. To realize a non invasive identification of pathogens, the exhaled breath of 53 persons (24 patients suffering chronic or infectious on Pseudomonas and 29 healthy controls) was investigated using an ion mobility spectrometer type BioScout. In total 224 different signals were found. Actually, 21 different signals are able to differentiate the two groups, Control and Pseudomonas, with rank sum values less than 0.2. For all 224 signals Box-and-Wisker plots were realized. The peaks with the lowest rank sum values F (0,107) and PS0 (0,112) show rather good separation of both groups. Our preliminary results demonstrate that distinct patterns of a small number of IMS-peaks are sufficient for the identification of these infectious agents. Therefore MCC-IMS seems to be a promising method for the non-invasive identification of patients which are colonized or infected with bacteria such as Pseudomonas aeruginosa.  相似文献   

7.
In recent years, ion mobility spectrometry is increasingly in demand for new applications especially on biological samples (cells, bacteria, fungi), in medicine (diagnosis, therapy and medication control e.g. from breath analyses), for food quality control, safety monitoring and characterisation or process control in chemical and pharmaceutical industry. For this purpose instruments based on gas phase separation of ions in weak electric fields were developed at ISAS–Institute for Analytical Sciences, focussing on the particular challenges such as humid and rather complex samples, specific sampling procedures adapted to the application, fast pre-separation techniques like multi-capillary columns and suitable data processing including data bases for relevant analytes and automatic characterisation of IMS-chromatograms. Feasibility studies were carried out successfully for biological and medical purpose at ISAS, including the detection of bacteria, fungi and metabolites of cells and in human breath. For all those samples characteristic pattern of analytes were found and could be used for the identification of cell lines, fungi and bacteria as well as of numerous diseases. Furthermore, the quantification of those analytes could be used to obtain information about the state of the process or person (e.g. growth of cultures, development of diseases, level of medication, grade of cancer). Those examples shall demonstrate the potential of ion mobility spectrometry for the selected applications. However, a general and reliable data bases of reference analytes is required in the near future to enable an exploitation of the metabolic pathways and to confirm the relevance of the detected signals for the investigated topic.  相似文献   

8.
Selected ion flow tube mass spectrometry, (SIFT-MS), is a technique for simultaneous real-time quantification of several trace gases in air and exhaled breath. It relies on chemical ionization of the trace gas molecules in air/breath samples introduced into helium carrier gas, using H(3)O(+), NO(+) and O(2)(+) reagent (precursor ions). Reactions between the precursor ions and the trace gas molecules proceed for an accurately defined time, the precursor and product ions being detected and counted by a downstream mass spectrometer. Absolute concentrations of trace gases in single breath exhalation can be determined by SIFT-MS down to parts-per-billion (ppb) levels, obviating sample collection into bags or onto traps. Calibration using chemical standards is not required, as the concentrations are calculated using the known reaction rate constants and measured flow rates and pressures. SIFT-MS has been used for many pilot investigations in several areas of research, especially as a non-invasive breath analysis tool to investigate physiological processes in humans and animals, for clinical diagnosis and for therapeutic monitoring. Examples of the results obtained from several such studies are outlined to demonstrate the potential of SIFT-MS for trace gas analysis of air, exhaled breath and the headspace above liquids.  相似文献   

9.
A study has been carried out of the decay of ethanol in mouth‐exhaled and nose‐exhaled breath of two healthy volunteers following the ingestion of various doses of alcohol at different dilutions in water. Concurrent analyses of sequential single breath exhalations from the two volunteers were carried out using selected ion flow tube mass spectrometry, SIFT‐MS, on‐line and in real time continuously over some 200 min following each alcohol dose by simply switching sampling between the two volunteers. Thus, the time interval between breath exhalations was only a few minutes, and this results in well‐defined decay curves. Inspection of the mouth‐exhaled and nose‐exhaled breath data shows that mouth contamination of ethanol diminished to insignificant levels after a few minutes. The detailed results of the analyses of nose‐exhaled breath show that the peak levels and the decay rates of breath ethanol are dependent on the ethanol dose and the volume of ethanol/water mixture ingested. From these data, both the efficiency of the first‐pass metabolism of ethanol and the indications of gastric emptying rates at the various doses and ingested volumes have been obtained for the two volunteers. Additionally and simultaneously, acetaldehyde, acetic acid and acetone were measured in each single breath exhalation. Acetaldehyde, the primary product of ethanol metabolism, is seen to track the breath ethanol. Acetic acid, a possible secondary product of this metabolism, was detected in the exhaled breath, but was shown to largely originate in the oral cavity. Breath acetone was seen to increase over the long period of measurement due to the depletion of nutrients. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

10.
Ion mobility Spectrometry is used to detect volatile analytes within human breath directly. Many volatile organic compounds (VOC) show significant day-to-day variation in the signal height related to the concentration of the analyte, although the breath collection had been performed under the same conditions with respect to similar sampling procedure, similar dead volume, similar measurement time, and measurement conditions. Variations of 8 different analytes are investigated over a time period of 11 months in the exhaled breath of the same person in the same room environment. The individual variability is reported for Benzothiazole; D-Limonene; Eucalyptol; Decamethylcyclopentasiloxane; Decanal; 1-Hexanol, 2-ethyl-; Cyclohexanone, 5-methyl-2-(1-methylethyl) and Nonanal. The paper shows, that the individual variability must be taken into consideration to relate the findings to medical questions. Therefore, the room air concentration of VOCs must be taken into account, so that the difference between exhaled and inhaled air has to be used as indicator. Finally, starting with individual variabilities, the normal variation related to the specific analyte should be considered in addition.  相似文献   

11.
An analytical method to identify volatile organic compounds (VOCs) in the exhaled breath from patients with a diagnosis of chronic obstructive pulmonary disease (COPD) using a ultrafast gas chromatography system equipped with an electronic nose detector (FGC eNose) has been developed. A prospective study was performed in 23 COPD patients and 33 healthy volunteers; exhalation breathing tests were performed with Tedlar bags. Each sample was analyzed by FCG eNose and the identification of VOCs was based on the Kovats index. Raw data were reduced by principal component analysis (PCA) and canonical discriminant analysis [canonical analysis of principal coordinates (CAP)]. The FCG eNose technology was able to identify 17 VOCs that distinguish COPD patients from healthy volunteers. At all stages of PCA and CAP the discrimination between groups was obvious. Chemical prints were correctly classified up to 82.2%, and were matched with 78.9% of the VOCs detected in the exhaled breath samples. Receiver operating characteristic curve analysis indicated the sensitivity and specificity to be 96% and 91%, respectively. This pilot study demonstrates that FGC eNose is a useful tool to identify VOCs as biomarkers in exhaled breath from COPD patients. Further studies should be performed to enhance the clinical relevance of this quick and ease methodology for COPD diagnosis.  相似文献   

12.
The calibration of extremely complex humid gas-phase mixtures – often required in ion mobility spectrometry applications – is challenging, even when high-performance calibration gas generators such as HovaCAL® are applied. Here, we describe an approach to develop and apply mixtures of VOCs in one channel of such a calibration gas generator for a complex calibration in one sweep. As an example, a mixture of so-called “Signs of Life” – compounds available in the exhaled breath and/or in the sweat of everybody was used. The procedure of developing the appropriate mixture and the results of a successful calibration of a GC-ion mobility spectrometer are presented.  相似文献   

13.
A microfabricated electromechanical system based on radio frequency modulated ion mobility spectrometry (MEMS-RFIMS), also known as differential ion mobility spectrometry (DMS) has been successfully interfaced to a custom-fabricated resistively heated temperature programmable micromachined gas chromatograph. In contrast to a conventional time-of-flight ion mobility spectrometer, the DMS uses the non-linear mobility dependence in strong radio frequency electric fields for ion filtering. Selective and sensitive detection of targeted analytes of interest can be achieved by using different transport gases, radio frequencies, and associated compensation voltages. In addition, the detection of both positive and negative ions, depending on the ionization mechanism favorable to the analytes involved is achieved. When compared to a stand-alone GC with a non spectrometric detector or a stand-alone DMS, GC-DMS as a hyphenated technique offers two competitive advantages; two orthogonal separating methods in a single analytical system and the resolving power of gas chromatography to minimize charge exchange in the ionization chamber of the detector. In this article, a portable, resistively heated temperature programmable silicon machined gas chromatograph with differential mobility detection is introduced. The performance of the instrument is illustrated with examples of difficult industrial applications.  相似文献   

14.
A method for the estimation of the human intake of trihalomethanes (THMs), namely chloroform, bromodichloromethane, dibromochloromethane and bromoform, during showering and bathing is reported. The method is based on the determination of these compounds in exhaled breath that is collected by solid adsorption on Tenax using a device specifically designed for this purpose. Instrumental measurements were performed by automatic thermal desorption coupled to gas chromatography with electron capture detection. THMs in exhaled breath samples were determined during showering and swimming pool attendance. The levels of these compounds in indoor air and water were also determined as reference for interpretation of the exhaled breath results. The THM concentrations in exhaled breath of the volunteers measured before the exposure experiments showed a close correspondence with the THMs levels in indoor air where the sampler was located. Limits of detection in exhaled breath were dependent on THM analytes and experimental sites. They ranged between 170 and 710 ng m−3 in the swimming pool studies and between 97 and 460 ng m−3 in the showering studies. Application of this method to THMs determination during showering and swimming pool activities revealed statistically significant increases in THMs concentrations when comparing exhaled breath before and after exposure.  相似文献   

15.
A study has been carried out, involving three healthy volunteers, of the ammonia levels in breath exhaled via the mouth and via the nose and in the static oral cavity using on-line, selected ion flow tube mass spectrometry (SIFT-MS), obviating the problems associated with sample collection of ammonia. The unequivocal conclusion drawn is that the ammonia appearing in the mouth-exhaled breath of the three volunteers is largely generated in the oral cavity and that the ammonia originating at the alveolar interface in the lungs is typically at levels less than about 100 parts-per-billion, which is a small fraction of the total breath ammonia. This leads to the recommendation that exhaled breath analyses should focus on nose-exhaled breath if the objective is to use breath analysis to investigate systemic, metabolic disease.  相似文献   

16.
Sampling of breath under human control or automated control with sensors was combined with chemical determination of a synthetic sample using multi-capillary column ion mobility spectrometry to measure quantitative variability. Variation was 19% with an automated inlet and 33% with human control. Sensors to operate an automated inlet were also evaluated with human subjects and included carbon dioxide (CO2), flow (direction and velocity), volume (integrated from the flow rate) and humidity, all operating in the mainstream of exhaled air. The flow sensor provided a measure of sampling of breath from the upper airways and other sensors gauged exclusive sampling of the end-tidal volume as well. Sensors for volume and CO2 exhibited identical profiles, using appropriate threshold values, in reference to inspiration and expiration. A sensor for humidity lagged inspiration and expiration with a delay of 300 ms and therefore is diminished in value. The sensors recommended for an automated inlet for breath sampling are CO2 and the exhaled or tidal volume though tidal volume varies significantly with personal physiognomy. This necessitates an evaluation of a subject to establish a threshold setting and CO2 is the single best parameter providing the availability of sensor signal within 50 ms.  相似文献   

17.
A Hadamard transform-gas chromatography/mass spectrometry (HT-GC/MS) technique was employed for the online detection of ethanol or toluene in exhaled breath after drinking or smoking, respectively. Exhaled breath samples, collected from volunteers, were directly injected into the GC inlet by a Hadamard-injector without any pretreatment. In the case of breath from a drinker, using a conventional single injection, a small ion peak (corresponding to ∼0.1 ng of ethanol), the intensity of which was approximately equal to or less than the limit of detection. When the HT technique was applied, the signal-to-noise (S/N) ratio was dramatically improved. Furthermore, in the case of breath from a smoker, using conventional injection, a weak ion peak (corresponding to ∼0.7 pg of toluene) was marginally detected. However, the HT technique led to an improvement in the S/N ratio, with the peak corresponding to the limit of detection. In both cases, the HT technique permitted specific components in exhaled breath to be determined, without the need for any extraction procedures.  相似文献   

18.
Exhaled aliphatic aldehydes were proposed as non-invasive biomarkers to detect increased lipid peroxidation in various diseases. As a prelude to clinical application of the multicapillary column–ion mobility spectrometry for the evaluation of aldehyde exhalation, we, therefore: (1) identified the most abundant volatile aliphatic aldehydes originating from in vitro oxidation of various polyunsaturated fatty acids; (2) evaluated emittance of aldehydes from plastic parts of the breathing circuit; (3) conducted a pilot study for in vivo quantification of exhaled aldehydes in mechanically ventilated patients. Pentanal, hexanal, heptanal, and nonanal were quantifiable in the headspace of oxidizing polyunsaturated fatty acids, with pentanal and hexanal predominating. Plastic parts of the breathing circuit emitted hexanal, octanal, nonanal, and decanal, whereby nonanal and decanal were ubiquitous and pentanal or heptanal not being detected. Only pentanal was quantifiable in breath of mechanically ventilated surgical patients with a mean exhaled concentration of 13 ± 5 ppb. An explorative analysis suggested that pentanal exhalation is associated with mechanical power—a measure for the invasiveness of mechanical ventilation. In conclusion, exhaled pentanal is a promising non-invasive biomarker for lipid peroxidation inducing pathologies, and should be evaluated in future clinical studies, particularly for detection of lung injury.  相似文献   

19.
Exhaled breath of patients suffering non-small bronchial carcinoma contains volatile organic compounds (VOC) different from healthy people. VOCs could be detected using ion mobility spectrometry down to the pg/L range even in air directly. To date, the origin of the different VOCs found is insecure. Such VOCs could be a direct product of the metabolism of the tumor or relatable to mostly present co-factors like infections or necrosis or a reaction of the human organism to the tumor (e.g. oxidativ stress). In the present study the breath of 19 patients suffering from confirmed NSCLC (non-small-cell lung carcinoma) with different histological types was investigated. In all cases flexible video-chip bronchoscopy was realized. Before taking samples for histological investigations in the lung on both main bronchi, samples of air were taken using a polytetrafluoroethylene (PTFE or Teflon) tube as catheter directly from the working channel of a bronchoscope and connected directly to the inlet of the ion mobility spectrometer. The measurement was started immediately. In total, 72 common peaks could be identified. 5 Peaks were significantly varying between the tumor site and the collateral lung. Considering adenocarcinoma, one peak separates both sites clearly and was relatable to the dimer of n-Dodecane. Two peaks were found on squamous cell carcinoma and relatable to 2-Butanol or 2-Methylfuran and Nonanal. The sensitivity, specificity, positive and negative predictive values were, for adenocarcinoma 100%, 75%, 80% and 100%, respectively – for squamous cell carcinoma 78%/78%, 67%/78%, 70%/80% and 75%/88%, for 2-Butanol and Nonanal respectively. Therefore, VOCs obtained from bronchoscopic sampling of breath could be detected using ion mobility spectrometry. The present study suggests that lung carcinoma with different histology will be represented by different volatile analytes.  相似文献   

20.
Ion Mobility Spectrometry is a powerful method for the rapid identification of gas-phase analytes and finds its usage in various fields including the sensitive analysis of extremely complex and humid mixtures such as human breath when additional pre-separation techniques are applied. The output data from an ion mobility spectrometer (IMS), equipped with a Multi-Capillary Column (MCC) for pre-separation, is a chromatogram of the signal intensity versus a particular retention time and a specific reduced ion mobility which are the characteristics of the detected analyte. Hence, it is important to have a database of analytes with both the values for comparison and identification of peaks in any IMS chromatogram. Commonly, such databases are collected by measurements of reference analytes. It is obvious that a prognosis of the values, without the time consuming and costly reference measurements, would be a considerable facilitation for a preliminary identification of unknowns and development of databases. In this study, a correlation between the reduced ion mobilities and the number of carbon atoms was found for secondary alcohols. The correlation was then used to predict the reduced ion mobilities of other analytes in the same homologous series. To verify the accuracy of the prognosis, the analytes were measured individually using a 63Ni-MCC-IMS and compared to the predicted values. The results of the prognosis show an accuracy higher than 99.5%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号