首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Cobalt–silicon mixed oxides with Co/Si ratio of 10/90 (10Co), 20/80 (20Co) and 30/70 (30Co) were prepared by a modified sol–gel method. The materials treated in air at 400 and 600 °C were characterized by SEM and TPR/TPO techniques. TPR measurements showed that in all samples only a fraction of Co was present as Co3O4 and as amorphous silicate and was reducible by H2 within 800 °C, while a part was not reducible under TPR conditions. The fraction of Co not reducible decreased with increasing Co content. A TPO/TPR cycle gave rise to an increase of the fraction of not reducible Co.  相似文献   

2.
Pd-based sulfated zirconia catalysts have been prepared through a single step (one-pot) sol–gel preparation technique, in which both sulfate and Pd precursors were dissolved in an organic solution before the gelation step. Observation of the calcination procedure through TGA/DSC and mass spectrometry revealed that the addition of increasing amounts of Pd resulted in the evolution of organic precursor species at lower temperatures. In situ XRD experiments showed that tetragonal zirconia is formed at lower temperatures and larger zirconia crystallites are formed when Pd is added to the gel. Although tetragonal zirconia was the only phase observed through XRD, Raman spectra of samples calcined at 700 °C showed the presence of both the tetragonal and the monoclinic phase, indicating a surface phase transition. DRIFTS experiments showed NO species adsorbed on Pd2+ cations. Pd/SZ catalysts prepared through this single step method were active for the reduction of NO2 with CH4 under lean conditions. Calcination temperature had a significant effect on this activity, with samples calcined at 700 °C being much more active than those calcined at 600 °C, despite the observed transition to the monoclinic phase. This activity may be linked to observed changes in the surface sulfate species at higher calcination temperatures.  相似文献   

3.
Ceria–zirconia mixed oxide was successfully synthesized via the sol–gel process at ambient temperature, followed by calcination at 500, 700 and 900 °C. The synthesis parameters, such as alkoxide concentration, aging time and heating temperature, were studied to obtain the most uniform and remarkably high‐surface‐area cubic‐phase mixed oxides. The thermal stability of both oxides was enhanced by mutual substitution. Surface areas of the CexZr1?xO2 powders were improved by increasing ceria content, and their thermal stability was increased by the incorporation of ZrO2. The most stable cubic‐phase solid solutions were obtained in the Ce range above 50 mol%. The highest surface area was obtained from the mixed catalyst containing a ceria content of 90 mol% (200 m2/g). Temperature programmed reduction results show that increasing the amount of Zr in the mixed oxides results in a decrease in the reduction temperature, and that the splitting of the support reduction process into two peaks depends on CeO2 content. The CO oxidation activity of samples was found to be related to its composition. The activity of catalysts for this reaction decreased with a decrease in Zr amount in cubic phase catalysts. Ce6Zr4O2 exhibited the highest activity for CO oxidation. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

4.
Adhesion of soft and hard tissues to yttria‐stabilized zirconia (YSZ) has been reported, despite its chemical inertness. To investigate the underlying mechanism of adhesion of hard and soft tissues to YSZ in dental implants, YSZ disks with (100), (110), and (111) crystalline planes were immersed in water for 60 days and in Hanks solution for 7 days, and the changes in the surface chemical states were characterized using X‐ray photoelectron spectroscopy. After immersion in water for 60 days, the concentration of hydroxyl groups on the YSZ surface increased. Therefore, the surface of YSZ was hydrated during immersion in water. In addition, phosphate groups were formed on the surface of YSZ immersed in Hanks solution. We conclude that the formation of phosphate on the YSZ surface in physiological conditions can promote reaction with the surrounding tissues.  相似文献   

5.
Hydrogenated amorphous carbon films (a‐C : H) were prepared by d.c.‐pulse plasma chemical vapor deposition using CH4 and H2 gases. The microstructure and hardness of the resulting films were investigated at different deposition pressures (6, 8, 11, 15, and 20 Pa). The growth rate increased sharply from 3.2 to 10.3 nm/min with increasing the pressure from 6 to 20 Pa. According to Raman spectra, XPS, and Fourier transform infrared analysis, the films deposited at the pressure of 6 and 8 Pa have high sp3 content and show typical diamond‐like character. However, the microstructures and bond configuration of the films deposited at 11, 15, and 20 Pa have high sp2 content and favored fullerene‐like nanostructure. The hardness and sp2 content were shown to reach their minimum values simultaneously at a deposition pressure of 8 Pa and then increased continuously. The film with fullerene‐like nanostructure obtained at 20 Pa displays a high Raman ID/IG ratio (~1.6), and low XPS C 1s binding energy (284.4 eV). The microstructural analysis indicates that the films are composed of a hard and locally dense fullerene‐like network, i.e. a predominantly sp2‐bonded material. The rigidity of the films is basically provided by a matrix of dispersed cross‐linked sp2 sites. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

6.
Surface and catalytic properties of Cu–Ce–O composite materials prepared by solution combustion method have been investigated. The materials are characterized by X-ray diffraction (XRD), temperature programmed reduction (TPR) and electron paramagnetic resonance spectroscopy (EPR). The results of EPR and TPR show finely dispersed Cu2+ species on ceria matrix with low copper content. The Cu2+ species exists in the form of dimers and clusters which are not evident in XRD. In addition CuO is also present as small clusters which grow to larger size at higher Cu content. There is no evidence of CuO forming a solid solution with fluorite CeO2 in combustion method. The Cu2+ species mostly appear on surface rather than in the bulk. Hydrogen peroxide decomposition kinetics has been carried out on Cu–Ce–O composite materials to investigate the effect of crystalline and well-dispersed copper oxide phases on CeO2. From kinetic results, the catalyst materials can be grouped into highly dispersed as well as crystalline CuO phases present on CeO2 matrix. Two parallel compensating lines for dispersed and crystalline CuO phases on CeO2 are observed in ln A versus Ea plot indicating the compensation effect in H2O2 decomposition. This observation is consistent with XRD and EPR results.  相似文献   

7.
Amorphous silicon carbonitride (a‐SiCN) films were produced by remote nitrogen plasma chemical vapour deposition (RP‐CVD) from bis(dimethylamino)methylsilane precursor. The effect of substrate temperature (T S) on the kinetics of RP‐CVD, chemical structure, surface morphology and some properties of the resulting films is reported. The T S dependence of film growth rate implies that RP‐CVD is an adsorption‐controlled process. Fourier transform infrared spectroscopic examination revealed that an increase in T S from 30 to 400°C involves the elimination of organic moieties from the film and the formation of Si─C and Si─N network structure. The films were characterized in terms of their surface roughness and basic physical and optical properties, such as density and refractive index, respectively. Reasonably good relationships between the structural parameters represented by relative integrated intensity of infrared absorption bands from the Si─C and Si─N bonds (controlled by T S) and the film properties are determined. Due to their small surface roughness, high density and high refractive index, the a‐SiCN films produced at T S ≥ 350°C would seem to be useful protective coatings for metals and optical devices.  相似文献   

8.
The chemical composition and bonding structures of B–C–N–H films fabricated by medium frequency magnetron sputtering, with N2+CH4+Ar gas mixture sputtering the boron target, were investigated. XPS and FTIR spectrometric analyses show that the increase of CH4 flow rate during deposition causes an increase of the C content in the films. The increase in the CH4 flow rate promotes an increase in the B–C, C–N single and C?N double bonds which are the components of the hybridized B–C–N bonding structure. From the results of Raman spectroscopy analysis, it is seen that the intensity of the D band of the films' Raman spectrum decreases with increasing CH4 flow rate, indicating a decrease of the sp2‐phase content or the sp2 C cluster size. The decreases of ID/IG also reflect the formation of more boron‐ or nitrogen‐ bound sp3‐coordinated carbons in the films. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

9.
This work is focused on the ceria zirconia mixed oxide prepared through a surfactant‐introduced synthesis method. High surface area nanoparticle mesoporous ceria/zirconia‐mixed oxide was successfully synthesized and characterized using various techniques. High surface area mesoporous fluorite‐structured CeO2? ZrO2 was obtained from the elimination of surfactants upon calcination. A surface area in excess of 205.6 m2/g was obtained after calcination at 500 °C, and dropped to 75.96 m2/g by heating at 900 °C. Temperature‐programming reduction (TPR) results showed that the lowest reduction temperature was obtained from the sample containing 40% zirconia content. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

10.
In this work a new class of ionomeric block perfluropolyether (PFPE) polyurethanes are presented; these polymers are obtained in the form of aqueous dispersions due to the presence of hydrophilic sites (ionomeric groups such as acetates or trialkylammonium salts) along the macromolecular chain, offering the chance to combine PFPEs in a variety of possible structures for coating or surface treatments with an environmentally friendly use. X‐ray photoelectron spectroscopy analysis at two different sampling depths, as well as time‐of‐flight secondary ion mass spectrometry analysis modelled by the use of principal component analysis (PCA), were used to investigate the first nanometres of the surface samples. It resulted in a clear surface enrichment in fluorine, and the different extent of the fluorine stratification will be discussed in relation to the ionic character, film‐forming from water and cross‐linking. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

11.
In this work, aluminium (Alclad 2024‐T3) substrates were cleaned by an r.f. (13.56 MHz) plasma, using argon (Ar), oxygen (O2) and a mixture of O2/Ar (50:50) gases. The effectiveness of plasma cleaning was checked in situ using X‐ray photoelectron spectroscopy (XPS) and ex situ using water contact angle measurements. XPS O/Al surface atomic ratios are in excellent agreement with those of the crystalline boehmite and the pseudoboehmite. Oxygen O 1s peak‐fitting was used to quantify the proportion of hydroxyl ions and the functional composition on the aluminium surface: the surface cleaned with O2 plasma contains 50% of aluminium hydroxides, the ones cleaned with Ar plasma and with Ar/O2 plasma contain, respectively, 25 and 37% hydroxyl ions. The binding energy separation between Al 2p and O 1s is characteristic of AlO(OH). Thin SiOx films were subsequently deposited from a mixture of hexamethyldisiloxane (HMDSO) and oxygen. In the absence of oxygen, a hydrophobic (Θ≥ 100° ) film characteristic of polydimethylsiloxane (PDMS) is formed: polysiloxane‐like thinner films (SiOx) are obtained with the introduction of oxygen. XPS and contact angle measurements confirmed both the composition and the structure of these films. More importantly, contact angle measurements using different liquids and interpreted with the van Oss‐Good‐Chaudhury theory allowed determination of the surface free energy of the deposited films: the calculated values of surface tension of the film formed from HMDSO/O2: (50/50) are in excellent agreement with those of reference silica‐based materials such as a silicon wafer and cleaned glass. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

12.
On X-ray photoelectron spectra of the Au-Rh/TiO2 catalysts the position of Au4f peak was practically unaffected by the presence of rhodium, the peak position of Rh3d, however, shifted to lower binding energy with the increase of gold content of the catalysts. Rh enrichment in the outer layers of the bimetallic crystallites was experienced. The bands due to Au0-CO, Rh0-CO and (Rh0)2-CO were observed on the IR spectra of bimetallic samples, no signs for Rh+-(CO)2 were detected on these catalysts. The results were interpreted by electron donation from titania through gold to rhodium and by the higher particle size of bimetallic crystallites.  相似文献   

13.
Monomer-isomerization copolymerizations of styrene (St) and cis-2-butene (c2B) with TiCl3-(C2H5)3Al catalyst were studied. St and c2B were found to undergo a new type of monomer-isomerization copolymerization, i.e., only isomerization of 2B to 1-butene ( 1B ) took place to give a copolymer consisting of St and 1B units. The apparent copolymerization parameters were determined to be rst = 16.0 and rc2b = 0.003. The parameters were changed by the addition of NiCl2 (rSt = 8.4, rc2b = 0.05). The copolymers containing the major amount of St units were produced easily through monomer-isomerization copolymerization of St and 2B. © 1995 John Wiley & Sons, Inc.  相似文献   

14.
Surface selective oxides created during continuous annealing (MnO, SiO2, etc.) can have a deleterious effect on coating adhesion after hot‐dip galvanizing. Earlier research works have made it clear that increasing the annealing atmosphere oxidizing potential can alleviate the problem by reducing external surface selective oxidation. In the present study, increasing the water vapour content of the nitrogen–hydrogen protective gas mixture was used to raise its oxidizing potential. The technique was applied to a classical dual‐phase steel (0.15% C, 1.5% Mn, 0.45% Si, 0.05% Al…) that was annealed for 60 s at 800–810°C in protective atmospheres of nitrogen and 5% hydrogen with water vapour contents ranging from 10 to 6000 ppm. Post‐annealing surfaces were characterized by x‐ray photoelectron spectroscopy (XPS), secondary ion mass spectroscopy (SIMS) and scanning Auger microscopy (SAM). In situ XPS analyses were carried out right after simulation annealing in the preparation chamber connected to the spectrometer, never returning the specimens to air. This made it possible to identify in a reliable way the elements that segregated to the surface during the treatment, and to determine their corresponding oxidation states. On the other hand, the high sensitivity of SIMS was taken advantage of to assess oxide in‐depth concentration profiles (SiO2, Al2O3, FeO) as a function of the annealing conditions, and SAM was used to characterize the corresponding oxide particle morphology. External selective oxidation was thus shown to decrease with increasing water vapour contents in the atmosphere (from 80 to 6000 ppm), whereas internal oxidation increases drastically to ~4 μm below the free surface. At 10 ppm of H2O the oxygen partial pressure is very low and the external selective oxidation results in a thin, but almost complete, coverage of the steel surface. Consequently, metallic iron cannot be observed at the surface, thus hampering hot‐dip galvanizability, unless the water vapour content is raised to 6000 ppm. Various surface morphologies were observed and discussed. In the authors' opinion, basic investigations of this type are an indispensable first step to improving the response of highly alloyed steels (dual‐phase, TRIP) to hot‐dip galvanizing. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

15.
A novel approach to the preparation of polyethylene (PE) nanocomposites, with montmorillonite/silica hybrid (MT‐Si) supported catalyst, was developed. MT‐Si was prepared by depositing silica nanoparticles between galleries of the MT. A common zirconocene catalyst [bis(cyclopentadienyl)zirconium dichloride/methylaluminoxane] was fixed on the MT‐Si surface by a simple method. After ethylene polymerization, two classes of nanofillers (clay layers and silica nanoparticles) were dispersed concurrently in the PE matrix and PE/clay–silica nanocomposites were obtained. Exfoliation of the clay layers and dispersion of the silica nanoparticles were examined with transmission electron microscopy. Physical properties of the nanocomposites were characterized by tensile tests, dynamic mechanical analysis, and DSC. The nanocomposites with a low nanofiller loading (<10 wt %) exhibited good mechanical properties. The nanocomposite powder produced with the supported catalyst had a granular morphology and a high bulk density, typical of a heterogeneous catalyst system. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 941–949, 2004  相似文献   

16.
Nanoparticles of palladium were supported on SiO2 by chemical vapor deposition technique. The obtained Pd nanocatalyst was characterized by various techniques. This catalyst was found to be very efficient for the selective cross‐coupling of hydroxyl‐substituted aryl iodides and bromide with arylboronic acids in water at room temperature to produce the corresponding hydroxyl‐substituted biaryls. Coupling of phenylboronic acid with aryl iodides and bromides carrying substituents other than hydroxy group was also performed efficiently in refluxing ethanol. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

17.
Increasing energy demands have stimulated intense research activity on cleaner energy conversion such as regenerative fuel cells and reversible metal–air batteries. It is highly challenging but desirable to develop low‐cost bifunctional catalysts for both the oxygen reduction reaction (ORR) and the oxygen evolution reaction (OER), the lack of which is currently one of the major limiting components towards commercialization of these technologies. Here, we have conducted a systematic study on the OER and ORR performances of the Ruddlesden–Popper family of Lan+1NinO3n+1 (n=1, 2, 3, and ∞) in an alkaline medium for the first time. It is apparent that the Ni?O bond lengths and the hyperstoichiometric oxides in the rock‐salt layers correlate with the ORR activities, whereas the OER activities appear to be influenced by the OH? content on the surface of the compounds. In our case, the electronic configuration fails to predict the electrocatalytic activity of these compounds. This work provides guidelines to develop new electrocatalysts with improved performances.  相似文献   

18.
Nitazoxanide (NTZ) is a broad‐spectrum antimicrobial agent. Tizoxanide (T) and tizoxanide glucuronide (TG) are the major circulating metabolites after oral administration of NTZ. A rapid and specific LC–MS/MS method for the simultaneous quantification of T and TG in mouse plasma was developed and validated. A simple acetonitrile‐induced protein precipitation method was employed to extract two analytes and the internal standard glipizide from 50 μL of mouse plasma. The purified samples were resolved using a C18 column with a mobile phase consisting of acetonitrile and 5 mm ammonium formate buffer (containing 0.05% formic acid) following a gradient elution. An API 3000 triple quadrupole mass spectrometer was operated under multiple reaction‐monitoring mode with electrospray ionization. The precursor‐to‐product ion transitions m/z 264 → m/z 217 for T and m/z 440 → m/z 264 for TG were used for quantification. The developed method was linear in the concentration ranges of 1.0–500.0 ng/mL for T and 5.0–1000.0 ng/mL for TG. The intra‐ and inter‐day precision and accuracy of the quality control samples at low, medium and high concentrations exhibited an RSD of <13.2% and the accuracy values ranged from ?9.6 to 9.3%. We used this validated method to study the pharmacokinetics of T and TG in mice following oral administration of NTZ. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

19.
In this work, the interrelation between the anti‐reflective property and the component, especially the sp2 content, was studied. The results showed that the refraction index n increased from 2.2 to 3.3 with the direct current negative bias increasing. The reflection result R successful fall by 11.9% because of the existence of hydrogenated amorphous carbon anti‐reflective coatings. Both the refraction index and reflectivity decreasing correspond to a more graphitic microstructure character. Moreover, the optical property evolution of the films was explained by the chemical vapor deposition mechanism based on the ion sub‐plantation model and two‐phase model. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

20.
Epoxy/SiO2 nanocomposite materials were prepared by cationic photopolymerization and sol–gel process using a novel epoxy oligomer (EP‐Si(OC2H5)3) prepared by 3‐isocyanatopropyltriethoxysilane (IPTS)‐grafted bisphenol A epoxy resin and tetraethyl orthosilicate as inorganic precursor. The chemical structures of EP‐Si(OC2H5)3 were characterized by Fourier transformed infrared spectroscopy. Transmission electron microscopy showed that the in situ generated nano‐SiO2 dispersed uniformly in the EP matrix, and its average diameter is around 40 nm. The relationship between nanocomposite materials' thermal/mechanical properties and nano‐SiO2 introduced were studied by thermogravimetric analysis, dynamic mechanical analysis, and impact strength test. The results showed that the nanocomposite materials' thermal and mechanical properties improved a lot with increase of the SiO2 content. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号