首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two C(9)H(7) isomers, 1-phenylpropargyl and 3-phenylpropargyl, have been studied by IR/UV double resonance spectroscopy in a free jet. The species are possible intermediates in the formation of soot and polycyclic aromatic hydrocarbons (PAH). The radicals are generated by flash pyrolysis from the corresponding bromides and ionized at 255-297 nm in a one-color, two-photon process. Mid-infrared radiation between 500 and 1800 cm(-1) is provided by a free electron laser (FEL). It is shown that the two radicals can be distinguished by their infrared spectra. In addition, we studied the dimerization products originating from the phenylpropargyl self-reaction. We utilize the fact that the pyrolysis tube can be considered to be a flow reactor permitting us to investigate the chemistry in such a thermal reactor. Dimerization of phenylpropargyl produces predominately species with m/z = 228 and 230. A surprisingly high selectivity has been found: The species with m/z = 230 is identified to be para-terphenyl, whereas m/z = 228 can be assigned to 1-phenylethynyl-naphthalene. The results allow to derive a mechanism for the dimerization of phenylpropargyl and suggest hitherto unexplored pathways to the formation of soot and PAH.  相似文献   

2.
We report a new application of fluorescence spectroscopy for the identification and characterization of chemical species in complex environments. Simultaneous collection of a dispersed fluorescence spectrum for every step of the laser wavelength results in a two-dimensional spectrum of emission versus excitation wavelengths. This two-dimensional fluorescence (2DF) spectrum yields quick and intuitive assignments of a multitude of peaks in the separate fluorescence excitation and dispersed fluorescence spectra as belonging to the same species. We demonstrate the technique with the measurement of 2DF spectra of a discharge of dilute benzene into a supersonic free jet. A multitude of rovibronic bands due to the C(2) Swan and C(3) comet bands are immediately apparent and even unreported bands can be assigned intuituvely. Custom software filters are employed to enhance or reject emission from one or the other carrier to obtain excitation spectra arising from purely one carrier, or even a specific spectral component of a single carrier. The very characteristic 2DF fingerprints of C(2) and C(3) permit identification of another unidentified species in the discharge that absorbs at 476 nm, coincident with one of the diffuse interstellar bands.  相似文献   

3.
The laser-induced fluorescence spectrum of 3-vinyl-1H-indene was recorded between 33,000 and 33,800 cm(-1). An origin band was observed at 33,455 cm(-1) along with several low-frequency modes. With the aid of density functional theory and configuration interaction calculations, the electronic transition was assigned as S1 <-- S0 and the short progression in an 80 cm(-1) mode was identified as a vinyl group torsion. Theoretical, spectroscopic, and thermochemical considerations suggest that the 3-vinyl-1H-indene spectrum results from excitation from both conformational isomers with the vinyl and indene double bonds in trans and cis arrangements. The results are discussed in the context of the identification of species arising from the discharge of benzene in argon.  相似文献   

4.
We report the measurement of a jet-cooled electronic spectrum of the silicon trimer. Si(3) was produced in a pulsed discharge of silane in argon, and the excitation spectrum examined in the 18 000-20 800 cm(-1) region. A combination of resonant two-color two-photon ionization (R2C2PI) time-of-flight mass spectroscopy, laser-induced fluorescence/dispersed fluorescence, and equation-of-motion coupled-cluster calculations have been used to establish that the observed spectrum is dominated by the 1(3)A(1)" - a? (3)A(2)' transition of the D(3h) isomer. The spectrum has an origin transition at 18,600 ± 4 cm(-1) and a short progression in the symmetric stretch with a frequency of ~445 cm(-1), in good agreement with a predicted vertical transition energy of 2.34 eV for excitation to the 1(3)A(1)" state, which has a calculated symmetric stretching frequency of 480 cm(-1). In addition, a ~505 cm(-1) ground state vibrational frequency determined from sequence bands and dispersed fluorescence is in agreement with an earlier zero-electron kinetic energy study of the lowest D(3h) state and with theory. A weaker, overlapping band system with a ~360 cm(-1) progression, observed in the same mass channel (m/z = 84) by R2C2PI but under different discharge conditions, is thought to be due to transitions from the (more complicated) singlet C(2v) ground state ((1)A(1)) state of Si(3). Evidence of emission to this latter state in the triplet dispersed fluorescence spectra suggests extensive mixing in the excited triplet and singlet manifolds. Prospects for further spectroscopic characterization of the singlet system and direct measurement of the energy separation between the lowest singlet and triplet states are discussed.  相似文献   

5.
A detailed study of the photochemical and discharge-driven pathways taken by gas-phase 1,3-butadiene has been carried out. Photolysis or discharge excitation was initiated inside a short reaction tube attached to the outlet of a pulsed valve. Bath gas temperatures near 100 K were achieved in the reaction tube by the constrained expansion of the gas mixture into the tube, simulating temperatures of relevance in Titan's atmosphere. Photolysis of 1,3-butadiene was initiated at 218 nm with a laser pulse that counter-propagated the reaction tube. Discharge excitation was carried out using discharge electrodes imbedded in the reaction tube walls, enabling the study of the photochemical and discharge products under similar conditions. Products were detected using either single-photon VUV photoionization (118 nm = 10.5 eV) or resonant two-photon ionization (R(2)PI) spectroscopy in a time-of-flight mass spectrometer. Emphasis was placed on characterization of the aromatic products formed, since these may be of particular relevance to Titan's atmosphere, where benzene has been positively identified and 1,3-butadiene is projected as the principle pathway to its formation. Consistent with previous studies of the photodissociation of 1,3-butadiene, C(3)H(3) + CH(3) is the dominant primary product formed. Under the temperature-pressure conditions present in the reaction tube (T approximately 75-100 K, P = 50 mbar), C(6)H(6) is the dominant secondary photochemical product formed. A 1:1 C(4)H(6):C(4)D(6) mixture was used to prove that the C(6)H(6) product was formed by recombination of two C(3)H(3) radicals; however, a careful search for benzene revealed none, indicating that less than 1% of the C(6)H(6) formed in the reaction tube is benzene. This is consistent with expectations for these temperatures and pressures based on previous modeling of propargyl recombination. Two aromatic products were observed from the photochemistry: ethylbenzene and 3-phenylpropyne. Plausible pathways leading to these products are proposed. In the discharge, C(3)H(3) + CH(3) are also identified as significant primary neutral products and C(6)H(6) as a dominant higher-mass product. In this case, the C(6)H(6) was identified as benzene via its R2PI spectrum, appearing with intensity about 10 times larger than any other aromatic formed in the discharge. R2PI spectra of a total of about 15 aromatic products were recorded from the 1,3-butadiene discharge, among them toluene; styrene; phenylacetylene; o-, m-, and p-xylene; ethylbenzene; indane; indene; beta-methylstyrene; and naphthalene. Previously unidentified spectra in the m/z 142 and 144 mass channels were positively identified as the 1,3- and 1,4-isomers of phenylcyclopentadiene and the analogous 1-phenylcyclopentene.  相似文献   

6.
Thiophene sesquioxide is shown to be syn, endo-3a,4,7,7a-tetrahydro-4,7-epithiobenzo[b]-thiophene 1,1,8-trioxide (I) by 1 H and 13 C nmr evidence. Assignment of the 13 C spectrum was facilitated by a cross-ring long-range 13 C-1 H coupling. The mass spectrum of I is dominated by an unusual break-down to give benzene radical cation.  相似文献   

7.
Gas phase C 6H 7 (+) and C 7H 9 (+) ions are studied with infrared photodissociation spectroscopy (IRPD) and the method of rare gas tagging. The ions are produced in a pulsed electric discharge supersonic expansion source from benzene or toluene precursors. We observe exclusively the formation of either the C 2 v benzenium ion (protonated benzene) or the para isomer of the toluenium ion (protonated toluene). The infrared spectral signatures associated with each ion are established between 750 and 3400 cm (-1). Comparing the gas phase spectrum of the benzenium ion to the spectrum obtained in a superacid matrix [ Perkampus, H. H.; Baumgarten, E. Angew. Chem. Int. Ed. 1964, 3, 776 ], we find that the C 2 v structure of the gas phase species is minimally affected by the matrix environment. An intense band near 1610 cm (-1) is observed for both ions and is indicative of the allylic pi-electron density associated with the six membered ring in these systems. This spectral signature, also observed for alkyl substituted benzenium ions and protonated naphthalene, compares favorably with the interstellar, unidentified infrared emission band near 6.2 microm (1613 cm (-1)).  相似文献   

8.
Beta-carotene scavenges triplet diacetyl generated by laser flash photolysis with a second-order rate constant of 9.1+/-0.9 x 10(9) M(-1) s(-1) in deaerated benzene at 20 degrees C. In the presence of oxygen diacetyl dissociates to generate acetylperoxyl radicals. It is demonstrated that diacetyl does not dissociate to any appreciable extent in the absence of oxygen. The acetylperoxyl radical is scavenged by beta-carotene with second-order rate constant 9.2+/-0.6 x 10(8) M(-1) s(-1) in aerated benzene at 20 degrees C to give an adduct between the acetylperoxyl radical and beta-carotene, whereas no evidence of oxidation of beta-carotene by the strongly oxidizing acetylperoxyl radical to give the beta-carotene radical cation is found. This adduct decays with first-order rate constant 1.35+/-0.16 x 10(3) s(-1) to give (presumably) a beta-carotene epoxide and the acetyloxyl radical.  相似文献   

9.
The unimolecular reactions of radical cations and cations derived from phenylarsane, C6H5AsH2 (1) and dideutero phenylarsane, C6H5AsD2 (1-d2), were investigated by methods of tandem mass spectrometry and theoretical calculations. The mass spectrometric experiments reveal that the molecular ion of phenylarsane, 1*+, exhibits different reactivity at low and high internal excess energy. Only at low internal energy the observed fragmentations are as expected, that is the molecular ion 1*+ decomposes almost exclusively by loss of an H atom. The deuterated derivative 1-d2 with an AsD2 group eliminates selectively a D atom under these conditions. The resulting phenylarsenium ion [C6H5AsH]+, 2+, decomposes rather easily by loss of the As atom to give the benzene radical cation [C6H6]*+ and is therefore of low abundance in the 70 eV EI mass spectrum. At high internal excess energy, the ion 1*+ decomposes very differently either by elimination of an H2 molecule, or by release of the As atom, or by loss of an AsH fragment. Final products of these reactions are either the benzoarsenium ion 4*+, or the benzonium ion [C6H7]+, or the benzene radical cation, [C6H6]*+. As key-steps, these fragmentations contain reductive eliminations from the central As atom under H-H or C-H bond formation. Labeling experiments show that H/D exchange reactions precede these fragmentations and, specifically, that complete positional exchange of the H atoms in 1*+ occurs. Computations at the UMP2/6-311+G(d)//UHF/6-311+G(d) level agree best with the experimental results and suggest: (i) 1*+ rearranges (activation enthalpy of 93 kJ mol(-1)) to a distinctly more stable (DeltaH(r)(298) = -64 kJ mol(-1)) isomer 1 sigma*+ with a structure best represented as a distonic radical cation sigma complex between AsH and benzene. (ii) The six H atoms of the benzene moiety of 1 sigma*+ become equivalent by a fast ring walk of the AsH group. (iii) A reversible isomerization 1+<==>1 sigma*+ scrambles eventually all H atoms over all positions in 1*+. The distonic radical cation 1*+ is predisposed for the elimination of an As atom or an AsH fragment. The calculations are in accordance with the experimentally preferred reactions when the As atom and the AsH fragment are generated in the quartet and triplet state, respectively. Alternatively, 1*(+) undergoes a reductive elimination of H2 from the AsH2 group via a remarkably stable complex of the phenylarsandiyl radical cation, [C6H5As]*+ and an H2 molecule.  相似文献   

10.
To make the effects of molecular size on photoinduced electron-transfer (ET) reactions clear, the ET fluorescence quenching of aromatic hydrocarbons by trivalent lanthanide ions M3+ (europium ion Eu3+ and ytterbium ion Yb3+) and the following ET reactions such as the geminate and free radical recombination were studied in acetonitrile. The rate constant k(q) of fluorescence quenching, the yields of free radical (phi(R)) and fluorescer triplet (phi(T)) in fluorescence quenching, and the rate constant k(rec) of free radical recombination were measured. Upon analysis of the free energy dependence of k(q), phi(R), phi(T), and k(rec), it was found that the switchover of the fluorescence quenching mechanism occurs at deltaG(fet) = -1.4 to -1.6 eV: When deltaG(fet) < -1.6 eV, the fluorescence quenching by M3+ is induced by a long-distance ET yielding the geminate radical ion pairs. When deltaG(fet) > -1.4 eV, it is induced by an exciplex formation. The exciplex dissociates rapidly to yield either the fluorescer triplet or the geminate radical ion pairs. The large shift of switchover deltaG(fet) from -0.5 eV for aromatic quenchers to -1.4 to -1.6 eV for lanthanide ions is almost attributed to the difference in the molecular size of the quenchers. Furthermore, it was substantiated that the free energy dependence of ET rates for the geminate and free radical recombination is satisfactorily interpreted within the limits of the Marcus theory.  相似文献   

11.
制备了纳米(20~50 nm)HZSM-5催化剂, 用XRF, TEM和NH3-TPD等手段对催化剂进行了表征. 以正辛烷及苯和正辛烷混合物的转化为模型反应, 研究了单烃和混合烃在纳米HZSM-5催化剂上的转化行为, 考察了反应条件对产物分布的影响. 结果表明, 纳米HZSM-5沸石催化剂具有很强的烃类转化能力, 烃类通过芳构化、 异构化和烷基化等反应转化为高辛烷值的异构烷烃和芳烃, 产物中异构烷烃(C4~C6)和芳烃的质量分数超过90%. 直链烷烃转化为芳烃以生成苯环为主, 混合烃转化为芳烃以苯和小分子烃的烷基化为主. 控制反应条件可抑制苯和C+9芳烃的生成. 产物分析结果表明, 烃类在纳米HZSM-5催化剂上的裂解、芳构化和异构化等遵循正碳离子机理.  相似文献   

12.
Fluorescence quenching of 1,4-bis(1H-pyrrol-1-yl)benzene, 1-(1H-pyrrol-2-yl)-1-(1-vinyl-1H-pyrrol-1-yl)benzene, and 1,4-bis(1-vinyl-1H-pyrrol-2-yl)benzene with chloromethanes (methylene chloride, chloroform, and carbon tetrachloride) in solvents with different polarities follows electron-transfer mechanism. The occurrence of an electron-transfer step is confirmed by formation of short-lived pyrrolylbenzene radical cations. An exception is quenching of fluorescence of 1,4-bis(1-vinyl-1H-pyrrol-2-yl)benzene in n-hexane in the presence of CCl4 and CHCl3 and in pure CCl4. In this case, neutral 1,4-bis(1-vinyl-1H-pyrrol-2-yl)benzene·-Cl radical is formed via recombination of 1,4-bis(1-vinyl-1H-pyrrol-2-yl)benzene radical cation and chloride anion. A relation was found between the nature of the short-lived species detected by laser photolysis and stable product obtained by stationary photolysis.  相似文献   

13.
Röpcke  J.  Revalde  G.  Osiac  M.  Li  K.  Meichsner  J. 《Plasma Chemistry and Plasma Processing》2002,22(1):139-159
Tunable infrared diode laser absorption spectroscopy has been used to detect the methyl radical and three stable molecules, CH4, C2H2 and C2H6, in radio frequency plasmas (f=13.56 MHz) containing hexamethyldisiloxane (HMDSO). The methyl radical concentration and the concentration of the stable hydrocarbons, produced in the plasma, have been measured in pure HMDSO discharges and with admixtures of Ar, while discharge power (P=20–200 W), total gas pressure (p=0.08–0.6 mbar), gas mixture and total gas flow rate (=1–10 sccm) were varied. The methyl radical concentration was found to be in the range of 1013 molecules cm-3, while methane and ethane are the dominant hydrocarbons with concentrations of 1014–1015 mol cm-3. Conversion rates to the measured stable hydrocarbons (RC(CxHy): 2×1012–2×1016 molecules J-1 s-1) could be estimated in dependence on power, flow, mixture and pressure. Under the used experimental conditions a maximum deposition rate of polymer layers of about 400 nm min-1 has been found.  相似文献   

14.
Recently we demonstrated that the C(7)-unsubstituted tetrahydro-1,8-naphthyridin-3-ol has more than an order of magnitude better peroxyl radical trapping activity than alpha-tocopherol (alpha-TOH) in inhibited autoxidations in benzene. In order to prepare analogues more structurally related to alpha-TOH for further studies in vitro and in vivo, we developed synthetic approaches to C(7)-monoalkyl and C(7)-dialkyl analogues using a sequence involving (1) AgNO3-mediated hydroxymethyl radical addition to 1,8-naphthyridine, (2) regioselective alkyllithium addition by cyclic chelation in a nonpolar solvent, (3) iodination of the naphthyridine at C(3), and (4) CuI-medidated benzyloxylation of the aryl iodide followed by catalytic hydrogenolysis. An alpha-TOH isostere was prepared by a Wittig coupling of a C16 side chain identical to that of alpha-TOH to the naphthyridinols. The C(7)-mono- and dialkyl analogues exhibited more than an order of magnitude higher antioxidant activity (k(inh) = (5.3-6.1) x 10(7) M(-1) s(-1)) than alpha-TOH (k(inh) = 0.35 x 10(7) M(-) s(-1)) in benzene, as determined by a newly developed peroxyl radical clock. In addition to the strong antioxidant activity in benzene, the closest alpha-TOH analogue (naphthyridinol-based tocopherol, N-TOH) showed excellent inhibition of the oxidation of cholesteryl esters in human low-density lipoprotein and spared endogenous alpha-TOH in these experiments. Lateral diffusion of N-TOH in 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine liposomes was comparable to that of alpha-TOH, suggesting that it will have good antioxidant characteristics in both membranes and lipoproteins. Furthermore, a binding assay using a fluorescent tocopherol analogue showed that N-TOH binds to recombinant human tocopherol transfer protein better than alpha-TOH itself, suggesting that distribution of unnatural antioxidants such as N-TOH in vivo is possible.  相似文献   

15.
The near-ultraviolet band system of the jet-cooled boron difluoride free radical has been studied by a combination of laser-induced fluorescence and single vibronic level wavelength resolved emission spectroscopies. The radical was produced in a supersonic discharge jet using a precursor mixture of 1%-3% of BF(3) or (10)BF(3) in high pressure argon. A large number of bands were found in the 340-286 nm region and assigned as transitions from the X?(2)A(1) ground state to the lower Renner-Teller component of the A?(2)Π excited state, based on our previous ab initio potential energy surface predictions, matching the emission spectra Franck-Condon profiles of (11)BF(2) and (10)BF(2), and comparison of observed and calculated boron isotope effects. Several bands have been rotationally analyzed providing ground state structural parameters of r(0)(') (BF) = 1.3102(9) ? and θ(0)(') (FBF) = 119.7(6)°. The ground state totally symmetric vibrational energy levels of both boron isotopologues have also been measured and assigned up to energies of more than 8000 cm(-1). Although BF(2) might be considered to be a "simple" free radical, understanding the details of its electronic spectrum remains a major challenge for both theory and experiment.  相似文献   

16.
The reactions of α-hydroxyl and α-alkoxyl alkyl radicals with methanesulfonyl chloride (MeSO(2)Cl) have been studied by pulse radiolysis at room temperature. The alkyl radicals were produced by ionizing radiation of N(2)O-saturated aqueous solution containing methanol, ethanol, isopropanol, or tetrahydrofuran. The transient optical absorption spectrum consisted of a broad band in the region 280-380 nm with a maximum at 320 nm typical of the MeSO(2)(?) radical. The rate constants in the interval of 1.7 × 10(7)-2.2 × 10(8) M(-1) s(-1) were assigned to an electron-transfer process that leads to MeSO(2)Cl(?-), subsequently decaying into MeSO(2)(?) radical and Cl(-). The rate constants for the addition of CH(3)SO(2)(?) to acrolein and propiolic acid were found to be 4.9 × 10(9) M(-1) s(-1) and 5.9 × 10(7) M(-1) s(-1), respectively, in aqueous solutions and reversible. The reactivity of tosyl radical (p-CH(3)C(6)H(4)SO(2)(?)) toward a series of alkenes bearing various functional groups was also determined by competition kinetics in benzene. The rate constants for the addition of tosyl radical to alkenes vary in a much narrower range than the rate constants for the reverse reaction. The stabilization of the adduct radical substantially contributes to the increase of the rate constant for the addition of tosyl radical to alkenes and, conversely, retards the β-elimination of tosyl radical.  相似文献   

17.
Ab initio G3(MP2,CC)//B3LYP calculations of the potential energy surface (PES) for the formation of indene involving hydrocarbon species abundant in combustion, including benzene, phenyl, propargyl, and methyl radicals, and acetylene, have been performed to investigate the build-up of an additional cyclopenta moiety over the existing six-member aromatic ring. They were followed by statistical calculations of high-pressure-limit thermal rate constants in the temperature range of 300-3000 K for all reaction steps utilizing conventional Rice-Ramsperger-Kassel-Marcus (RRKM) and transition-state (TST) theories. The hydrogen abstraction acetylene addition (HACA) type mechanism, which involves the formation of benzyl radical followed by addition of acetylene, is shown to have low barriers (12-16 kcal/mol) and to be a viable candidate to account for indene formation in combustion flames, such as the 1,3-butadiene flame, where this mechanism was earlier suggested as the major indene formation route (Granata et al. Combust. Flame 2002, 131, 273). The mechanism of indene formation involving the addition of propargyl radical to benzene and rearrangements on the C9H9 PES is demonstrated to have higher barriers for all reaction steps as compared to an alternative pathway, which starts from the recombination of phenyl and propargyl radicals and then proceeds by activation of the C9H8 adducts by H abstraction or elimination followed by five-member ring closure in C9H7 and H addition to the 2-indenyl radical. The suggested pathways represent potentially important contributors to the formation of indene in combustion flames, and the computed rate constants can be utilized in kinetic simulations of the reaction mechanisms leading to indene and to higher cyclopentafused polycyclic aromatic hydrocarbons (CP-PAH).  相似文献   

18.
The radiation chemical yields of the products derived from the triplet excited state produced in the radiolysis of liquid benzene with gamma-rays, 10 MeV 4He ions, and 10 MeV 12C ions have been determined. Iodine scavenging techniques have been used to examine the formation and role of radicals, especially the H atom and phenyl radical. For all irradiation types examined here, the increase in hydrogen iodide yields with increasing iodine concentration matches the increase in iodobenzene yields. This agreement suggests that the benzene triplet excited state is the common precursor for the H atom and the phenyl radical. Pulse radiolysis studies in liquid benzene have determined the rate coefficients for the reactions of phenyl radicals with iodine and with the solvent benzene to be 9.3 x 10(9) M(-1) s(-1) and 3.1 x 10(5) M(-1) s(-1), respectively. Direct measurements of polymer formation, which refers to trimers (C18) and higher order compounds (>C18), in liquid benzene radiolysis using gamma-rays, 4He ions, and 12C ions at relatively high doses have been performed using gel permeation chromatography. The yields of trimers increase from gamma-rays to 12C ions due to the increased importance of intratrack radical-radical reactions that can be scavenged by the radical scavenging reactions of iodine. On the other hand, the >C18 product yields decrease from gamma-rays to 12C ions. The structure of the polymer consists of a partly saturated ring as determined by infrared and gas chromatography/mass spectrometry studies. A schematic representation for the radiolytic decomposition of the benzene triplet excited state is presented.  相似文献   

19.
高义德  冉琴  陈旸  陈从香 《化学学报》2002,60(2):256-260
对CCl4/Ar混合气体直流脉冲放电产生CCl2自由基,再分别用波长为550.56nm,541.52nm,532.25nm,524.31nm,523.82nm和523.27nm的激光将电子基态CCl2激励到激发态A^1B1的(0,3,0),(0,4,0),(1,3,0),(0,6,0),(1,4,0),(2,2,0)振动态,激发态CCl2(A^1B1)的不同振动态的时间分辨荧光信号显示该信号呈双指数衰减,测得室温下CCl2(A^1B1)不同振动态被NH3,H2O,CH2Br2,NH(CH3)2,NH(C2H5)2,N(C2H5)3,n-C6H14等分子猝灭的实验结果,用三能级模型分析处理实验数据,获得态分辨速率常数kA和ka值,并对实验结果进行了讨论。  相似文献   

20.
The experiments are carried out in the system of continuous flow reactors with dielectric-barrier discharge (DBD) for studies on the conversion of natural gas to C2 hydrocarbons through plasma catalysis under the atmosphere pressure and room temperature. The influence of discharge frequency, structure of electrode, discharge voltage, number of electrode, ratio of H2/CH4, flow rate and catalyst on conversion of methane and selectivity of C2 hydrocarbons are investigated. At the same time, the reaction process is investigated. Higher conversion of methane and selectivity of C2 hydrocarbons are achieved and deposited carbons are eliminated by proper choice of parameters. The appropriate operation parameters in dielectric-barrier discharge plasma field are that the supply voltage is 20-40 kV (8.4-40 W), the frequency of power supply is 20 kHz, the structure of (b) electrode is suitable, and the flow of methane is 20-60 ml · min-1. The conversion of methane can reach 45%, the selectivity of C2 hydrocarbons i  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号