首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Monodispersed AgGaS2 three-dimensional (3D) nanoflowers have been successfully synthesized in a “soft-chemical” system with the mixture of 1-octyl alcohol and cyclohexane as reaction medium and oleylamine as surfactant. The crystal phase, morphology and chemical composition of the as-prepared products were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), and high-resolution TEM (HTEM), respectively. Results reveal that the as-synthesized AgGaS2 nanoflowers are in tetragonal structure with 3D flower-like shape. Controlled experiments demonstrated that the shape transformation of AgGaS2 nanocrystals from 3D nanoflowers (50 nm) to nanoparticles (10-20 nm) could be readily realized by tuning the reaction parameters, e.g., the ratio of octanol to cyclohexane, the length of carbon chain of fatty alcohol, the concentration of oleylamine, etc. The UV-vis and PL spectra of the obtained AgGaS2 nanoflowers and colloids were researched. In addition, the photoelectron energy conversion (SPV) of AgGaS2 nanoflowers was further researched by the surface photovoltage spectra.  相似文献   

2.
An asymmetrical perylene diimide 3, N-(4-methoxyphenyl)-N'-(4-nitrophenyl)-perylene-3,4,9,10-tetracarboxylic diimide, was synthesized, and its self-assembly and dissociation behaviors in chloroform was studied in detail by UV-vis and fluorescence spectroscopies. The resulting unique helical nanostructures from 3 were proposed to be self-assembled via the cooperative actions of π-π stacking, steric hindrance and electrophile-nucleophile type pairing.  相似文献   

3.
A new method using defect-pit-assisted growth technology to successfully synthesize the high-quality single crystalline GaN nanostructures by ammoniating Ga(2)O(3) films was proposed in this paper. During the ammoniating process, the amorphous middle buffer layer may unavoidably produce some defects and dislocations. Some defect pits come out, which have the lowest surface energy and can subsequently be used as a mask/template or act as potential nucleation sites to fabricate the GaN actinomorphic nanostructures. The as-prepared products are characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and high-resolution transmission electron microscopy (HRTEM). The results indicate that all the reflections of the samples can be indexed to the hexagonal GaN phase and the clear lattice fringes in HRTEM further confirm the growth of high-quality single-crystal GaN nanostructures. The SEM images show that the nanostructures have been realized under different experimental conditions exhibiting different shapes: nanowires, nanorods, and nanobelts. No particles or other nanostructures are found in the SEM study, demonstrating that the product possesses pure nanostructures. These nanostructures show a very good emission peak at 366 nm, which will have a good advantage for applications in laser devices using one-dimensional structures. Finally, the growth mechanism is also briefly discussed.  相似文献   

4.
With the control of G1 poly(amidoamine) (PAMAM), an evolutionary course of stable colloidal silver from discrete nanoparticles to solid spheres through ultraviolet irradiation reduction of silver nitrate solutions was observed by transmission electron microscopy (TEM). The morphologies of the products depend on the Ag+ concentration. A mechanism of globular assembly was put forward to interpret the evolution of the nanostructures. Powder X-ray diffraction (XRD), electron diffraction (ED) patterns, and X-ray photoelectron spectroscopy (XPS) indicate the presence of cubic symmetry silver. XPS and Fourier transform infrared (FT-IR) spectroscopy confirm that dendrimers have participated in the stabilization and control of Ag nanostructures. In the UV-vis spectra, the intense surface plasmons are centered at 425 and 430 nm corresponding to the shapes of dots and solid spheres, respectively. The solid spheres exhibit excellent catalytic efficiency on the reduction of 2,7-dicholoroflurescein (DCF).  相似文献   

5.
We report the first observation of the formation of novel Co-based three-dimensional (3D) self-assembly hollow nanostructures, i.e., nest-shaped nanospheres composed of sheet-like particles, via reduction of cobalt salt with sodium tetrahydroboride in cetyltrimethylammonium bromide (CTAB)-cyclohexane-NH4F aqueous solutions. It was found that the cyclohexane has a significant influence on the formation of the nest-shaped Co-based nanospheres, because when the experiments are carried out in the absence of cyclohexane, only sheet-like particles are formed. NH4F plays also an important role in the formation of the hollow nanostructures because without this salt mainly solid spherical structures, composed of sheet-like particles, instead of nest-shaped structures are obtained. The nanostructures are mainly formed by Co, but also a minor amount (17%) of Co2B is present in the final compounds. The structures are characterized by X-ray diffraction (XRD), energy dispersive spectroscopy (EDS), transmission electron microscopy (TEM), high resolution transmission electron microscopy (HRTEM), and field-emission scanning electron microscopy (FESEM). A possible mechanism for the formation of the novel Co-based nanostructures is proposed.  相似文献   

6.
A simple approach was proposed to synthesize three types of ellipsoidal hollow nanostructures whose shells are assembled from anatase TiO(2) nanosheets (NSs) with exposed (001) facets. Among them, ellipsoid Fe(3)O(4)@TiO(2)-NS nanorattles can be readily generated as a magnetically separable photocatalyst with enhanced activity through in situ reduction of the α-Fe(2)O(3) core.  相似文献   

7.
8.
Zinc oxide nanostructures: morphology derivation and evolution   总被引:1,自引:0,他引:1  
Zinc oxide nanostructures of various types, including nanobelts, nanoplatelets, nanowires, and nanorods, have been synthesized via well-developed routes by many research groups. However, so far, the underlying mechanism for the morphology derivation and evolution of the nanostructures has not been elucidated in depth. In this article, we report the systematic investigation of the morphology evolution characteristics of ZnO nanostructures from dense rods to dense nanoplatelets, nanoplatelet flowers, dense nanobelt flowers, and nanowire flowers in an evaporation-physical transport-condensation approach. Through the use of crystal growth theory, the determining factors for the formation of different nanostructural morphologies were found to be gas-phase supersaturation and the surface energy of the growing surface planes. Other experimental parameters such as the temperature at the source and the substrate, the temperature difference and the distance between the source and the substrate, the heating rate of the furnace, the gas flow rate, the ceramic tube diameter, and the starting material are all correlated with supersaturation and impose an effect on the morphology evolution. This finding may have an important impact on the qualitative understanding of the morphology evolution of nanostructures and the achieving of desired nanostructures controllably.  相似文献   

9.
Large-scale MoS2 and WS2 inorganic fullerene-like (IF) nanostructures (onionlike nanoparticles, nanotubes) and elegant three-dimensional nanoflowers (NF) have been selectively prepared through an atmospheric pressure chemical vapor deposition (APCVD) process with the reaction of chlorides and sulfur. The morphologies were controlled by adjusting the deposition position, the deposition temperature, and the flux of the carrier gas. All of the nanostructures have been characterized by X-ray powder diffraction (XRD), transmission electron microscopy (TEM), and scanning electron microscopy (SEM). A reaction mechanism is proposed based on the experimental results. The surface area of MoS2 IF nanoparticles and the field-emission effect of as-prepared WS2 nanoflowers is reported.  相似文献   

10.
A bis-phenylethynyl thiophene derivative functionalized with long-chain pyridyl biscarboxamides displayed unique helical morphology in the xerogel form via nicely complementary intermolecular interactions. The helical nanostructures visualized by TEM and AFM remarkably matched well with the computational results. Supramolecular chirality can be amplified by coassembly of a chiral conductor to bias the helical arrangement.  相似文献   

11.
ZnO nanostructures, including single-crystal nanowires, nanoneedles, nanoflowers, and tubular whiskers, have been fabricated at a modestly low temperature of 550 degrees C via the oxidation of metallic Zn powder without a metal catalyst. Specific ZnO nanostructures can be obtained at a specific temperature zone in the furnace depending on the temperature and the pressure of oxygen. Scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM), and X-ray diffraction (XRD) studies show that ZnO nanostructures thus prepared are single crystals with a wurtzite structure. X-ray excited optical luminescence (XEOL) from the ZnO nanostructures show noticeable morphology-dependent luminescence. Specifically, ZnO nanowires of around 15 nm in diameter emit the strongest green light. The morphology of these nanostructures, their XEOL, and the implication of the results will be discussed.  相似文献   

12.
We report on the synthesis of a composite made from iridium oxide and gold that has a flower-like morphology. The ratio of iridium oxide to gold can be controlled by altering the concentrations of the metal precursors or the pH of the solution containing the reductant citrate. Scanning electron microscopy, transmission electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, and laser confocal micro-Raman spectroscopy were applied to characterize the structures of the nanoflowers, and a mechanism of their formation was deduced. The nanoflowers display an electrocatalytic activity in an oxygen evolution reaction (OER) that is significantly enhanced compared to bare iridium oxide nanoparticles. The highest turnover frequency for the OER of the new nanoflowers is 10.9?s?1, which is almost one order of magnitude better than that of the respective nanoparticles. These attractive features are attributed to the high oxidation states of iridium in the nanoflowers which is caused by the transfer of electronic charge from metal oxides to gold, and also to the flower fractal structure which is thought to provide a much more accessible surface than suspensions of the respective nanoparticle.
Figure
Gold and iridium oxide composites with nanoflower shapes have been successfully prepared. The nanoflowers display an electrocatalytic activity for the oxygen evolution reaction, which is significantly enhanced compared to bare iridium oxide nanoparticles.  相似文献   

13.
Based on our long-term research on interpolymer complexation due to hydrogen bonding, we proposed several novel self-assembly approaches to polymeric micelles with regular structures. Differing from micelles of block and graft copolymers, our micelles don't have any chemical bonds between the core and shell. In addition, some of these approaches have been proved to be effective to fabricate hollow aggregates.  相似文献   

14.
The regulation of the basic properties of atom-economic catalysts at the atomic scale and atomic-level insights into the underlying mechanism of catalysis are less explored. We engineer the surface of vertical immobilized MoS2 on dispersible TiO2 nanofibers via atomic subtraction to precisely manipulate active sites at the atomic level. The photocatalytic performances of TiO2 @MoS2 after H2 reduction towards the hydrogen production under vis...  相似文献   

15.
Ultra-thin two-dimensional(2D) organic semiconductors are promising candidates for photocatalysts because of the short charge diffusion pathway and favorable exposure of active sites plus the versatile architecture. Nonetheless, the inherent dielectric confinement of 2D materials will induce a strong exciton effect hampering the charge separation. Herein, we demonstrated an effective way to reduce the dielectric confinement effect of 2D ionic covalent organic nanosheets(iCONs) by tailoring the f...  相似文献   

16.
17.
Intracellular reactive oxygen species (iROS) are the culprit in inflammation-linked diseases. Excessive radical generation triggers an inflammation cascade involving interleukin-6 (IL-6) and other cytokines release, causing oxidative stress to cells. Developing healthcare materials with dual-functionality controlling iROS and diagnosing IL-6 would be extremely beneficial for chronic inflammatory disease management. Herein, molybdenum trioxide hybridized kaempferol nanoparticles (MoHK NPs) have been synthesized with iROS scavenging and in situ electrochemical redox property for immunoassay of IL-6. Physicochemical integrity of nanosystem comprising MoHK NPs is characterized by X-ray absorption/photoelectron, Raman, and fourier transform infrared (FT-IR) spectroscopy as well as scanning transmission electron microscopy–high-angle annular dark field microscopic analysis. In vitro radical scavenging mechanism of MoHK NPs was studied by electron paramagnetic spectroscopy. Distinctly, these MoHK NPs exhibit a clinically significant antioxidant function and cytocompatibility with RAW 264.7 macrophage cell line. Bioaffinity layer–assisted monoclonal antibodies of IL-6 immobilized on MoHK electrode enable superior selectivity, electrochemical signal transduction (sensitivity 0.63 μA/fM/cm2), and rapid analytical response time even at ultralow IL-6 concentrations (detection limit 0.91 fM). This work demonstrates that hybridizing redox-active and antioxidant-rich phytochemical on metal oxide nanosystem can be a promising strategy for multifunctional theranostics.  相似文献   

18.
The recent development of 1D nanomaterials of controllable size, composition, and structure has opened up enormous possibilities for engineering catalysts with enhanced activity and selectivity. Herein, we report a one-step strategy for the fabrication of versatile silver nanomaterials. Tailored structures, such as nanobelts, nanowires, and nanocables, were conveniently synthesized by adjusting the reaction conditions. The novelty of this synthesis is in a one-pot procedure that combines the sequential formation of precursor nucleation, in situ polymerization, and crystal shaping under mild conditions. The as-synthesized cables consisted of a metallic core (Ag) and an organic outer shell (poly(o-anisidine), POA). Control experiments demonstrated that the introduced organic monomer (OA) not only acted as the nanoreactor and capping agent, but also a modest reducer for controlled crystal growth at the hydrophilic interface. Electrocatalytic tests showed enhanced stability and activity towards the reduction of oxygen, which was believed to be closely associated with the core-shell structural characteristics of the nanomaterials. Their electrocatalytic performance and tunable structure makes such silver nanobelts promising candidates for applications in catalysis and as sensors in nanoelectrochemical devices.  相似文献   

19.
The inorganic host-guest complex Na(22){[Mo(VI)(36)O(112)(H(2)O)(16)]?[Mo(VI)(130)Mo(V)(20)O(442)(OH)(10)(H(2)O)(61)]}·180H(2)O ≡ {Mo(36)}?{Mo(150)}, compound 1, has been isolated in its solid crystalline state via unconventional synthesis in a custom flow reactor. Carrying out the reaction under controlled flow conditions selected for the generation of {Mo(36)}?{Mo(150)} as the major product, allowing it to be reproducibly isolated in a moderate yield, as opposed to traditional "one-pot" batch syntheses that typically lead to crystallization of the {Mo(36)} and {Mo(150)} species separately. Structural and spectroscopic studies of compound 1 and the archetypal Molybdenum Blue (MB) wheel, {Mo(150)}, identified compound 1 as a likely intermediate in the {Mo(36)} templated synthesis of MB wheels. Further evidence illustrating the template effect of {Mo(36)} to MB wheel synthesis was indicated by an increase in the yield and rate of production of {Mo(150)} as a direct result of the addition of preformed {Mo(36)} to the reaction mixture. Dynamic light scattering (DLS) techniques were also used to corroborate the mechanism of formation of the MB wheels through observation of the individual cluster species in solution. DLS measurement of the reaction solutions from which {Mo(36)} and {Mo(150)} crystallized gave particle size distribution curves averaging 1.9 and 3.9 nm, consistent with the dimensions of the discrete clusters, which allowed the use of size as a possible distinguishing feature of these key species in the reduced acidified molybdate solutions and to observe the templation of the MB wheel by {Mo(36)} directly.  相似文献   

20.
With the elaborate engineering of supra-amphiphiles based on dual charge-transfer interactions, the rational design and programmable transformation of well-defined 1D and 2D nanostructures have been demonstrated. First, H-shaped supra-amphiphiles are successfully obtained on the basis of the directional charge-transfer interactions of naphthalene diimide and naphthalene, which self-assemble in water to form 2D nanosheets. Second, by complexation of the H-shaped supra-amphiphiles with pyrene derivatives, the 2D nanosheets transform into ultralong 1D nanofibers. Therefore, this line of research represents a successful example of supramolecular engineering and has enriched its realm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号