共查询到20条相似文献,搜索用时 0 毫秒
1.
In this paper, a new steplength formula is proposed for unconstrained optimization,which can determine the step-size only by one step and avoids the line search step. Global convergence of the five well-known conjugate gradient methods with this formula is analyzed,and the corresponding results are as follows:(1) The DY method globally converges for a strongly convex LC~1 objective function;(2) The CD method, the FR method, the PRP method and the LS method globally converge for a general, not necessarily convex, LC~1 objective function. 相似文献
2.
共轭梯度法是求解无约束优化问题的一种重要的方法.本文提出一族新的共轭梯度法,证明了其在推广的Wolfe非精确线搜索条件下具有全局收敛性.最后对算法进行了数值实验,实验结果验证了该算法的有效性. 相似文献
3.
由William W.Hager和张洪超提出的一种新的共轭梯度法(简称HZ方法),已被证明是一种有效的方法.本文证明了HZ共轭梯度法在Armijo型线性搜索下的全局收敛性.数值实验显示,在Armijo型线性搜索下的HZ共轭梯度法比在Wolfe线性搜索下更有效. 相似文献
4.
白延琴 《应用数学与计算数学学报》1996,10(1):92-96
在这篇文章中,我们给出了一些新的共轭梯度算法的收敛性条件,这些条件推广了已有的条件,使的已有的共轭梯度算法的收敛性结果成为本文结果的特殊情况。 相似文献
5.
本文提出了一类与HS方法相关的新的共轭梯度法.在强Wolfe线搜索的条件下,该方法能够保证搜索方向的充分下降性,并且在不需要假设目标函数为凸的情况下,证明了该方法的全局收敛性.同时,给出了这类新共轭梯度法的一种特殊形式,通过调整参数ρ,验证了它对给定测试函数的有效性. 相似文献
6.
7.
一类无充分下降条件的非单调共轭梯度法的全局收敛性分析 总被引:1,自引:0,他引:1
In [3] Liu et al. investigated global convergence of conjugate gradient methods.In that paper they allowed βk to be selected in a wider range and the global convergence of the corresponding algorithm without sufficient decrease condition was proved. This paper investigates global convergence of nonmonotone conjugate gradient method under the same conditions. 相似文献
8.
提出一类求解无约束最优化问题的混合共轭梯度算法,新算法有机地结合了DY算法和HS算法的优点,并采用非单调线搜索技术在较弱条件下证明了算法的全局收敛性.数值实验表明新算法具有良好的计算效能. 相似文献
9.
10.
Conjugate Gradient Methods with Armijo-type Line Searches 总被引:14,自引:0,他引:14
Yu-Hong DAIState Key Laboratory of Scientific Engineering Computing Institute of Computational Mathematics Academy of Mathematics System Sciences Chinese Academy of Sciences Beijing China 《应用数学学报(英文版)》2002,18(1):123-130
Abstract Two Armijo-type line searches are proposed in this paper for nonlinear conjugate gradient methods.Under these line searches, global convergence results are established for several famous conjugate gradientmethods, including the Fletcher-Reeves method, the Polak-Ribiere-Polyak method, and the conjugate descentmethod. 相似文献
11.
Global Convergence Properties of Nonlinear Conjugate Gradient Methods with Modified Secant Condition 总被引:1,自引:1,他引:1
Conjugate gradient methods are appealing for large scale nonlinear optimization problems. Recently, expecting the fast convergence of the methods, Dai and Liao (2001) used secant condition of quasi-Newton methods. In this paper, we make use of modified secant condition given by Zhang et al. (1999) and Zhang and Xu (2001) and propose a new conjugate gradient method following to Dai and Liao (2001). It is new features that this method takes both available gradient and function value information and achieves a high-order accuracy in approximating the second-order curvature of the objective function. The method is shown to be globally convergent under some assumptions. Numerical results are reported. 相似文献
12.
13.
A new conjugate gradient method is proposed in this paper. For any (inexact) line search, our scheme satifies the sufficient descent property. The method is proved to be globally convergent if the restricted Wolfe-Powell line search is used. Preliminary numerical result shows that it is efficient. 相似文献
14.
一种修正的谱CD共轭梯度算法的全局收敛性 总被引:2,自引:0,他引:2
In this paper,we present a new nonlinear modified spectral CD conjugate gradient method for solving large scale unconstrained optimization problems.The direction generated by the method is a descent direction for the objective function,and this property depends neither on the line search rule,nor on the convexity of the objective function.Moreover,the modified method reduces to the standard CD method if line search is exact.Under some mild conditions,we prove that the modified method with line search is globally convergent even if the objective function is nonconvex.Preliminary numerical results show that the proposed method is very promising. 相似文献
15.
16.
李灿 《数学的实践与认识》2016,(15):245-250
求解无约束优化问题的共轭梯度法,其搜索方向的下降性往往依赖于所采用的线性搜索.将提出一种修正的CD算法,其搜索方向d_k始终满足1-1/u≤(-g_k~Td_k)/(‖g_k‖~2)≤1+1/u(u1),即算法在不依赖任何线性搜索的情况下能始终产生充分下降方向.同时,当采用精确线性搜索时,该修正的CD算法就是标准的CD共轭梯度法.在适当条件下,还证明了修正的CD算法在强Wolfe线性搜索下具有全局收敛性.最后,我们给出了相应的数值结果,说明了算法是一种有效的算法. 相似文献
17.
18.
研究无约束优化问题的共轭梯度算法,提出了一种计算主要参数的新形式,分析了Wolfe搜索下该算法的全局收敛性. 相似文献
19.
限制PR共轭梯度法及其全局收敛性 总被引:5,自引:0,他引:5
PR共轭梯度法是求解大型无约束优化问题的有效算法之一,但是算法的全局收敛性在理论上一直没有得到解决。本文将PR共轭梯度法中的参数β加以限制,提出了限制R共轭梯度法,证明了Armijo搜索下算法的全局收敛性、数值试验表明算法是很有效的。 相似文献
20.
一个修正HS共轭梯度法及其收敛性 总被引:2,自引:0,他引:2
It is well-known that the direction generated by Hestenes-Stiefel (HS) conjugate gradient method may not be a descent direction for the objective function. In this paper, we take a little modification to the HS method, then the generated direction always satisfies the sufficient descent condition. An advantage of the modified Hestenes-Stiefel (MHS) method is that the scalar βkH Sffikeeps nonnegative under the weak Wolfe-Powell line search. The global convergence result of the MHS method is established under some mild conditions. Preliminary numerical results show that the MHS method is a little more efficient than PRP and HS methods. 相似文献