首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Abstract— The fluorescence properties of three ortho aminobenzoate local anesthetics have been determined in a variety of solvents. Results from these studies have been used to deduce how these drugs interact with phosphatidylcholine bilayers. The emission energy, fluorescence quantum yield and lifetime exhibited a biphasic dependence on solvent polarity. In aprotic solvents, alcohols and in ethanol-water mixtures containing less than 40% water, quantum yields and lifetimes were high (approximately 0.55 and 8.5 ns respectively). In ethanol-water mixtures containing >40% water, the strong fluorescence quenching was primarily due to an increase in the rate of non-radiative deactivation of the excited state. Both the radiative ( kr ) and non-radiative ( knr ) rate constants show a biphasic dependence on solvent polarity. These studies suggest the presence of two singlet excited states for these molecules, a polar singlet excited state, S1-p and a charge transfer excited state, S1-ct with the latter predominating in ethanol-water mixture containing >40% water. In egg phosphatidylcholine bilayers, the fluorescence, lifetime and quantum yield are consistent with the view that these drugs are localized within the lipid head group region where the charge-transfer excited state can be stabilized by intermolecular hydrogen bonding.  相似文献   

2.
The Z --> E photoisomerization and fluorescence quantum yields for the wild-type green fluorescence protein (GFP) chromophore (p-HBDI) and its meta- and para-amino analogues (m-ABDI and p-ABDI) in aprotic solvents (hexane, THF, and acetonitrile) and protic solvents (methanol and 10-20% H(2)O in THF) are reported. The dramatic decrease in the quantum yields on going from aprotic to protic solvents indicates the important role of solvent-solute hydrogen bonding in the nonradiative decay pathways. The enhanced fluorescence of m-ABDI is also discussed.  相似文献   

3.
The UV-vis electronic absorption and emission spectra of α-carboline or 1-azacarbazole, 9H-pyrido[2,3-b]indole, AC, have been investigated in aprotic solvents. Radiative, k(r), non-radiative, k(nr), rate constants and natural lifetimes, τ(N), of the AC monomer in hexane and acetonitrile, obtained from the experimentally determined fluorescence quantum yields and fluorescence lifetimes, have been compared with those theoretically estimated. The closeness between these experimental and theoretical data, the small Stokes shifts, the mirror image relationship between the absorption and fluorescence spectra and the close correspondence between the absorption and fluorescence excitation spectra, provide good evidences that the emission of AC monomer occurs directly from its lowest singlet excited state. The mono- and multi-parametric analyses of the AC solvatochromism indicate that the polarity-polarizability, the hydrogen bond donor and the hydrogen bond acceptor properties of the solvent preferentially stabilize the singlet excited over the ground state. These analyses also reveal that photoexcitation reinforces the hydrogen bond donor and acceptor properties of the AC, becoming the pyridinic nitrogen atom more basic and the pyrrolic group more acid.  相似文献   

4.
9-Trimethylstannylanthracene (1) was synthesized and its photolysis by 365-nm light was studied. In aprotic solvents, the dimerization of 1 involves positions 9 and 10 and yields a head-to-tail dimer. The main route of the photolysis of 1 in alcohols is the cleavage of the C-Sn bond with the formation of anthracene. The quantum yields of the photoreaction and the lifetimes and quantum yields of 1 fluorescence were determined.  相似文献   

5.
The correlation of dibutyl-ether-ester of xanthene dye structures with their photophysical properties is discussed with respect to their capability as fluorescent probes based on ultraviolet–visible absorption, fluorescence spectra and fluorescence lifetimes measured in different solvents. It was found that the dibutyl-ether-ester of fluorescein is very weakly emissive in aprotic solvents, but fairly strong fluorescent in alcohols. The dependence of fluorescence quantum yield (Φf) and lifetime (τf) on solvent polarity suggests non-involvement of the intra-molecular photoinduced electron transfer (PeT) mechanism, suggested previously to account for the emission efficiency of fluorescein derivatives. The xanthene dyes intend to self-assemble in aprotic solvents, less polar solvents facilitate the aggregation while hydrogen bonding disfavor it. The formation of non-emissive H-aggregates is proposed to be responsible for their fluorescent behavior. The esterification showed stronger influences on the photophysics than the etherification, i.e. the former caused larger reduction of Φf owing to the internal conversion. The halogenation decreases the fluorescence quantum yield and lifetime of the xanthene dyes, owing to the enhancement of inter-system crossing process.  相似文献   

6.
Abstract— The enhancement of weakly allowed vibronic transitions in the fluorescence spectra of pyrene, 1,12-benzoperylene and naphthalene, which we previously found to be the result of the reduction of the molecular symmetry caused by ground state complex formation with polar solvents, has been employed in the present work to study the microenvironment of these aromatic hydrocarbons when incorporated as fluorescent probes into egg phosphatidylcholine and dipalmitoyl phosphatidylcholine liposomes. The probes are found to interact and form ground state molecular complexes with polar groups of the liposomes. For egg phosphatidylcholine the degree of enhancement is matched by that in butanol, methanol and dioxane for the three probes, respectively. For dipalmitoyl phosphatidylcholine the matching solvents are ethanol, dimethylformamide and dioxane below the phase transition, while they are ether, methanol and dioxane above it. Thus, above the phase transition pyrene and 1,12-benzoperylene penetrate further into the liposomes, while naphthalene retains approximately the same location.  相似文献   

7.
《Chemical physics letters》2003,367(5-6):599-608
A femtosecond fluorescence upconversion study is reported for HBO in solution, as well as for HBO incorporated in DNA. The typical time for the excited-state intramolecular proton-transfer reaction of the syn-enol tautomer in solution and in DNA has been determined to be 150 fs. In addition, the lifetimes of the keto, the anti-enol and the ‘solvated enol’ tautomer forms were determined in protic solvents, aprotic solvents and DNA. Picosecond rise and decay components in the fluorescence transients with characteristic times between 3 and 25 ps are also observed and attributed to the effects of vibrational cooling.  相似文献   

8.
Photophysical properties of 2,6-diamino-9,10-anthraquinone (2,6-DAAQ) dye have been investigated in different solvents and solvent mixtures. The fluorescence quantum yields, fluorescence lifetimes, radiative rate constants, nonradiative rate constants and absorption and fluorescence spectral characteristics show unusual deviations in the lower polarity aprotic solvents in comparison to those in other aprotic solvents of medium to higher polarities. The results indicate that the dye exists in different structural forms in the lower and in the medium to higher polarity solvents. Drawing an analogy with the results reported for other amino-substituted dyes, it is inferred that 2,6-DAAQ dye adopts a planar intramolecular charge transfer (ICT) structure in medium to higher polarity solvents, where the amino lone pairs are in good resonance with the anthraquinone pi-cloud. In the lower polarity solvents, however, the dye is inferred to exist in a nonplanar structure where the amino lone pairs are not in good resonance with the anthraquinone pi-cloud. Due to these structural differences, the dye displays significantly different photophysical behavior in the lower polarity solvents than in the other solvents of medium to higher polarities. Supportive evidence for the above structural changes has been obtained from ab initio quantum chemical calculations on the structures of the dye under different conditions. Unusual deviations in the photophysical properties of 2,6-DAAQ dye in protic solvents in comparison to those in aprotic solvents of similar polarities are attributed to the intermolecular hydrogen bonding effect involving the OH groups of the protic solvents and the quinonoid oxygens of the dye.  相似文献   

9.
9-(4-Aminophenylethynyl)-10-(4-nitrophenylethynyl)anthracene (2) was synthesized in high yield by using a route involving sequential Sonogashira cross coupling reactions of 9-bromo-10-iodoanthracene with 4-nitrophenylacetylene and 4-aminophenylacetylene. Solvatochromism was observed in the absorption and fluorescence spectra of 2 in a variety of solvents. In less polar solvents, such as hexane and benzene, the fluorescence emission band of 2 appears in the green to orange region while this substance does not fluoresce in polar solvents, such as acetonitrile and DMF.  相似文献   

10.
The natural product hypericin was tested in recent years as a biological photosensitizer with a potential for viral and cellular photodamage. We thus studied extensively its spectroscopy and membrane partitioning. Absorption, fluorescence excitation and emission spectra of the sodium salt (HyNa) were measured in 36 protic and aprotic, polar and apolar, solvents. Electronic transition bands as well as vibrational progressions were identified. Aggregation in some nonpolar solvents and protonation in organic acids were demonstrated. Modeling solvatochromism was done by Lippert equation, by the ET(30) parameter and by the Taft multiparameter approach. In all cases, separation into protic and aprotic solvents gave much better fits to the models. 13C chemical shift data could also be correlated with solvent polarity. They correlated best with Lippert's delta f polarity measure, but tended to fall into two distinct solvent groups--each along different lines--corresponding to protic and aprotic media, respectively. This interesting phenomenon suggests that in the case of the charged and slightly water soluble HyNa, two mechanisms of solvation are involved, each resulting in its own line equation. In aprotic media, dipole-dipole interaction is the predominant solvation mechanism. In protic solvents, the most effective means of solvation is likely to be hydrogen bonding. When intercalated into the liposomal phospholipid bilayer, HyNa is oriented at an angle to the interface, thus experiencing a gradient of solvent polarities: a highly polar environment (similar to methanol) for C-2/5, suggesting that they lie not far from the interface; a moderately polar environment (similar to that of n-propanol) for C-6a/14a, which are somewhat deeper within the bilayer; and a more lipophilic environment (akin to n-hexanol) for C-10/11. The fluorescence excitation peak in liposomes also correlates with an aprotic medium of relatively high polarity, as might be excepted from a molecule in a shallow position in the bilayer.  相似文献   

11.
Abstract— The lowest-lying allowed UV transition in p -aminobenzoic acid (PABA) is assigned Γ→1La based on quantitative absorption and fluorescence studies, as well as semiempirical PM3 multielec-tron configuration interaction calculations. The oscillator strengths, fluorescence quantum efficiencies and lifetimes are reported for PABA in several polar, nonpolar, protic and aprotic solvents (aerated) at 296 K. Reasonable agreement is found between the observed radiative rate constant and that calculated from the absorption and fluorescence spectra. Shifts in the absorption and fluorescence spectra in aprotic solvents are analyzed in terms of the Onsager reaction field model; results are consistent with an increase in dipole moment of ca 4 D between the relaxed S0 and S1, states. No evidence is found for the emission from the amino-twisted form of PABA in all solvents studied although calculations show that the amino-twisted S, state is highly polar, but higher in energy by ca 35 kJ/mol ( in vacuo ). The fluorescence efficiency is excitation wavelength independent in both methylcyclohexane and water. The temperature dependence of the nonradiative rate constant (from S1) was studied in several solvents. Nonradiative decay may be due to intersystem crossing, which would be fast enough to compete with thermally activated intramolecular NH2 twisting. The phosphorescence spectrum and lifetime obtained in an EPA glass at 77 K are reported, and the triplet energy of PABA is estimated.  相似文献   

12.
Time resolved fluorescence of the benzyl, monomethylbenzyl and dimethylbenzyl radicals strapped in rigid solvents at low temperatures has been observed using the second harmonic of the ruby laser at the exciting source. The fluorescence lifetimes of these radicals are very long (10?7–10?6 sec), which are influenced considerably by the methyl substituents. The long fluorescence lifetimes of the benzyl radical and its methyl derivatives are interpreted in terms of the forbidden character of the first doublet-doublet electronic transition.  相似文献   

13.
We report on studies of femtosecond dynamics of a nonsteroidal anti-inflammatory drug, piroxicam (1), in water at three different pHs and for comparison in two aprotic solvents. An ultrafast excited-state proton-transfer (ESIPT) process takes place in neutral and cationic enol-type structures. Femtosecond emission and transient absorption experiments show that this reaction is barrierless, and the proton-transferred keto tautomer is formed in less than 100 fs in both organic solvents and acidic water. In neutral and alkaline water, the ESIPT is not present because of the prevalence of the anion structures at the ground state. For the excited anions (pH = 7, 11) and formed keto cations (pH approximately 3), an intramolecular charge-transfer process takes place in times shorter than 0.3 ps. The formed structures have a fluorescence lifetime of approximately 2-5 ps, depending on pH. In contrast, the internal twisting motion in organic solvents is slower (approximately 0.5-1 ps) and gives rotamers with lifetimes of tens of picoseconds. These results clearly show strong interactions of 1 with water, significantly distinct from those present in organic aprotic solvents. We believe that the results are important for a better understanding on short time interactions of drugs with their environment.  相似文献   

14.
Time resolved fluorescence of some methyl-substituted benzyl, triphenylmethyl, and diphenylmethyl radicals trapped in rigid solvents at low temperature has been observed. These radicals were excited by pulsed N2 laser at 337 nm. It is found that these radicals exhibit very long fluorescence lifetime. The long lifetimes of these radicals seem to indicate that the first doublet-doublet electronic transitions of the radicals have a forbidden character.  相似文献   

15.
Abstract Substantial isotope effects have been observed for the dye sensitised photo-oxidation of 1,3-diphenyl-2-pyrazoline in both polar and non polar solvents, implicating singlet oxygen as a reactive intermediate. By way of contrast, a solvent isotope effect upon the direct photo-oxidation of the pyrazoline was only observed when a protic solvent (methanol) was used. It was found that the photophysical properties (e.g. quantum yields and fluorescence lifetimes) of pyrazolines are sensitive to the isotopic composition of protic solvents but not aprotic solvents. The solvent isotope effect observed for the direct photo-oxidation reaction in methanol may not therefore be a true indication of the participation of singlet oxygen. Since this reaction may not be singlet oxygen mediated, an alternative mechanism is proposed.  相似文献   

16.
Absorption and fluorescence properties of aryl substituted porphyrins, 5,10,15,20-tetra-4-oxy(aceticacid)phenylporphyrin (TAPP), 5,10,15,20-tetra-(4-phenoxyphenyl) porphyrin (TPPP), 5,10,15,20-tetra-(3-bromo-4-hydroxyphenyl) porphyrin (TBHPP), and 5,10,15,20-tetra-p-chloromethylphenyl porphyrin (CMPP) were investigated. The UV/vis absorption, fluorescence and excited spectra as the fluorescence quantum yields and fluorescence lifetimes for the compounds were measured in organic solvents (chloroform (CHCl3), tetrahydrofuran (THF)) and immobilized media (PVC film, sol–gel matrix). The fluorescence quantum yields of TAPP and TPPP were higher than the others. The fluorescence lifetimes of all studied porphyrin derivates were found to be fifty percent lower and their fluorescence intensities were increased fifty percent more in both of immobilized mediums, as compared to organic solvents.  相似文献   

17.
This paper investigates how solution conditions, especially solvent polarity and hydrogen bonding, affect the fluorescence of ellipticine, a natural plant alkaloid with anticancer activity. A total of 16 solvents that cover a wide range of polarities were tested. The ultraviolet (UV) absorption and fluorescence emission of ellipticine were found to be solvent dependent. The absorption and emission maximum shifted to higher wavelengths (red shift) with increased solvent polarity. The difference in absorption and emission maximum (Stokes' shift) was large, approximately 10,000-11,000 cm-1, in polar solvents (with orientation polarizability Deltaf>0.2) but unusually small, approximately 8900 cm-1, in nonpolar solvents (hexane and cyclohexane). Large Stokes' shifts were due to an intramolecular charge transfer (ICT), which was enabled by large solvent polarity and hydrogen bonding of ellipticine with the solvents. Two transitions were found in the Lippert-Mataga plot between (1) nonpolar and semipolar solvents and between (2) semipolar and polar solvents. The first transition reflected the formation of hydrogen bonds between ellipticine and the solvents whereas the second transition indicated that ellipticine underwent an ICT. In addition, the larger extinction coefficients and the longer lifetime of ellipticine obtained in protic solvents were attributed to the formation of stronger hydrogen bonds. The photophysical response of ellipticine to changes in solvent polarity and hydrogen bond formation could be used to infer the location of ellipticine in a heterogeneous medium, namely liposomes in aqueous solution. A relatively large red shift of emission in liposomes indicated that ellipticine may be in a more polar environment with respect to the lipid bilayer, possibly close to the hydrophilic interface.  相似文献   

18.
The fluorescence lifetimes of the estrogens, estrone, 17β‐estradiol and 17α‐ethinylestradiol, were studied in various solvents. The fluorescence lifetimes of 17β‐estradiol and 17α‐ethinylestradiol decreased from 4.7 to 0.9 ns as the solvent hydrogen bond accepting ability increased, in good agreement with other phenolic molecules. Estrone's two fluorescence bands had distinct lifetimes, with the 304 nm band having a lifetime shorter than 200 ps, reflecting efficient energy transfer to the carbonyl group, which had lifetimes ranging from 4.4 to 4.9 ns depending on the solvent. Solvent effects on the 1ππ*, 1πσ* and 1nπ* states that are relevant to estrogen photophysics can adequately explain these trends. The solvent dependence on the excited states of these potent endocrine disruptors has significant implications for their photochemistry.  相似文献   

19.
The kinetics of heterolysis of 1-chloro-1-methylcyclohexane in 9 protic and 25 aprotic solvents at 25°C were studied by the verdazyl method. The kinetic equation is v = k[RCl] (E1 mechanism). The heterolysis rate of 1-chloro-1-methylcyclohexane in protic solvents is two orders of magnitude lower than that of 1-chloro-1-methylcyclopentane, whereas in low-polarity and nonpolar aprotic solvents the rates are close. A correlation analysis was made to reveal the solvation effects in heterolysis of both chlorides in a set of 9 protic and 25 aprotic solvents, and separately in protic and aprotic solvents.  相似文献   

20.
The excited state lifetimes of uracil, thymine and 5-fluorouracil have been measured using femtosecond UV fluorescence upconversion in various protic and aprotic polar solvents. The fastest decays are observed in acetonitrile and the slowest in aqueous solution while those observed in alcohols are intermediate. No direct correlation with macroscopic solvent parameters such as polarity or viscosity is found, but hydrogen bonding is one key factor affecting the fluorescence decay. It is proposed that the solvent modulates the relative energy of two close-lying electronically excited states, the bright ππ* and the dark nπ* states. This relative energy gap controls the non-radiative relaxation of the ππ* state through a conical intersection close to the Franck–Condon region competing with the ultrafast internal conversion to the ground state. In addition, an inverse isotope effect is observed in D2O where the decays are faster than in H2O.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号