首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new type of covalent binderless bulk modified electrode has been fabricated and used in the simultaneous determination of lead and cadmium ions at nanomolar level. The modification of graphitic carbon with 4-amino salicylic acid was carried out under microwave irradiation through the amide bond formation. The electrochemical behavior of the fabricated electrode has been carried out to decipher the interacting ability of the functional moieties present on the modifier molecules toward the simultaneous determination of Pb2+ and Cd2+ ions using cyclic and differential pulse anodic stripping voltammetry. The possible mode of interaction of functional groups with metal ions is proposed based on the pKa values of the modifier functionalities present on the surface of graphitic carbon particles. The analytical utility of the proposed sensor has been validated by measuring the lead and cadmium content from pretreated waste water samples of lead acid batteries.  相似文献   

2.
A sensitive hydrazine sensor has been fabricated using copper oxide nanoparticles modified glassy carbon electrode (GCE) to form nano-copper oxide/GCE. The nano-copper oxide was electrodeposited on the surface of GCE in CuCl2 solution at −0.4 V and was characterized by Scanning electron microscopy and X-ray diffraction. The prepared modified electrode showed a good electrocatalytic activity toward oxidation of hydrazine. The electrochemical behavior of hydrazine on nano-copper oxide/GCE was explored. The oxidative current increased linearly with improving concentration of hydrazine on nano-copper oxide/GCE from 0.1 to 600 μM and detection limit for hydrazine was evaluated to be 0.03 μM at a signal-to-noise ratio of 3. The oxidation mechanism of hydrazine on the nano-copper oxide/GCE was also discussed. The fabricated sensor could be used to determine hydrazine in real water.  相似文献   

3.
Cyclic voltammetry, chronoamperometry, and rotating disk electrode voltammetry were used to investigate the electrochemical behavior of thiobencarb (TB) at carbon paste electrode modified with an azo dye, 2-(4-((4-ethoxyphenyl)diazenyl)phenylamino)ethanol (EDPE), EDPE/modified carbon paste electrode (MCPE). The modified electrode showed high electrocatalytic activity toward thiobencarb. The current was enhanced significantly relative to the situation prevailing when a bare glassy carbon electrode was used. The kinetics parameters of this process were calculated, the apparent electron transfer rate constant k s and α (charge transfer coefficient between electrode and EDPE) were 14.6 s−1 and 0.48, respectively. The experimental parameters were optimized, and the mechanism of the catalytic process was discussed. The best defined cathodic peak was obtained with 0.1 M acetate buffer (pH 3.0). The response of the sensor was very quick, and response time was approximately 5 s. The differential pulse voltammetry response of the MCPE was linear against the concentration of TB in the range of 0.96 to 106 μg L−1. The limit of detection was found to be 0.025 μg L−1. The precision was examined by carrying out eight replicate measurements at a concentration of 25 μg L−1 TB; the relative standard deviation was 2.9%.  相似文献   

4.
A graphite–polyurethane composite electrode with Santa Barbara Amorphous 15, SBA-15, mesoporous silica organofunctionalized with 2-benzothiazolethiol (BTSBA) as bulk modifier has been characterized electrochemically by voltammetry and electrochemical impedance spectroscopy (EIS) in the presence of cadmium ions, as an example of a toxic trace heavy metal, as well as by solid-state 13C-NMR and by scanning electron microscopy. EIS measurements performed on the modified composite electrodes to investigate the influence of BTSBA on the deposition of cadmium during square wave anodic stripping voltammetry showed that organofunctionalization of the SBA-15 bulk modifier in the composite electrode facilitates heavy metal deposition. Experiments were also carried out with a mixture of submicromolar cadmium, lead, copper and mercury ions and led to similar conclusions.  相似文献   

5.
The potential of modified multiwalled carbon nanotubes (a solid-phase extraction sorbent), for the simultaneous separation and preconcentration of lead, cadmium and nickel; has been investigated. Lead, cadmium and nickel, were adsorbed quantitatively; on modified multiwalled carbon nanotubes (in the pH range of 2–4). Parameters influencing, the simultaneous preconcentration of Pb(II), Ni(II) and Cd(II) ions (such as pH of the sample, sample and eluent flow rate, type and volume of elution solution and interfering ions), have been examined and optimized. Under the optimum experimental conditions, the detection limits of this method. for Pb(II), Ni(II) and Cd(II) ions, were 0.32, 0.17 and 0.04 ng mL−1 in original solution, respectively. Seven replicate determinations, of a mixture of 2.0 μg mL−1 lead and nickel, and 1.0 μg mL−1 cadmium; gave a mean absorbance of 0.074, 0.151 and 0.310, with relative standard deviation 1.7%, 1.5% and 1.2%, respectively. The method has been applied, to the determination of trace amounts of lead, cadmium and nickel; in biological and water samples, with satisfactory results.   相似文献   

6.
A new simple and inexpensive optical chemical sensor for cadmium(II) ions is presented. The cadmium sensing system was prepared by incorporating 2-amino-cyclopentene-1-dithiocarboxylic acid (ACDA) on a triacetylcellulose membrane. The absorption spectra of the optical sensor membrane in Cd(II) solution showed a maximum peak at 430 nm. The proportionality in intensity of the membrane color on the optode to varying amounts of Cd(II) suggests its potential applications for screening Cd(II) in aqueous samples by visual colorimetry. The sensor provided a wide concentration range of 3.0 × 10−6–3.4 × 10−4 M of Cd(II) ions with a detection limit of 1.0 × 10−6 M (0.2 μg/mL). The relative standard deviations for eight replicate measurements of 8.0 × 10−6 and 5.0 × 10−5 M Cd(II) were 2.7 and 2.3%, respectively. The response time of the optode was 6 min. The influence of interfering ions on the determination of 1.0 × 10−5 M Cd(II) was studied and the main interferences were removed by extraction method. The sensor was applied to the determination of Cd(II) in water samples.  相似文献   

7.
The study of electrochemical behavior and determination of thebaine (THEB), an opiate alkaloid, is described on a multi-walled carbon nanotube (MWCNT) modified glassy carbon electrode by adsorptive stripping voltammetry and electrochemical impedance spectroscopy. The results indicated that MWCNT electrodes remarkably enhance electrocatalytic activity toward the oxidation of THEB in a wide pH range of 2.0–10.0, and it shows two irreversible and diffusion-controlled anodic peaks. Then, a sensitive, simple, and time-saving cyclic voltammetric procedure was developed for the analysis of THEB in human urine samples. Under optimized conditions, the oxidation peak has two linear dynamic ranges of 1.0–80.0 and 100.0–600.0 μM, with detection limit of 0.23 μM and a precision of <4% (relative standard deviation for eight analysis).  相似文献   

8.
The well-known method for the determination of selenium(IV), which is based on the cathodic stripping voltammetry of copper(I) selenide, has been adapted for application at the thin-film mercury electrode on glassy carbon (TFME). Insufficient reproducibility and sensitivity have been overcome by using a 0.1 mol/L HClO4 electrolyte solution containing 0.02 mol/L thiocyanate ions. Thiocyanate ions have been found to increase the peak height of the selenium response and shift it to more positive potentials. This behaviour is explained by an adsorption of SCN at the interface glassy carbon/Cu2Se and its action as an electron transfer catalyst between glassy carbon and copper(I) selenide. A 3σ-detection limit of 75 ng/L Se(IV) has been achieved. The relative standard deviation is 5.2% at 5 μg/L selenium(IV). The influence of cadmium(II), arsenic(III), zinc(II), iron(III) and lead(II) ions on the selenium response has been studied. In case of lead ions, a new signal occurred at more negative potentials than the reduction of Cu2Se. This signal, which is probably due to the reduction of PbSe, can also be used for the determination of selenium(IV). Received: 13 November 1996 / Revised: 19 December 1996 / Accepted: 24 December 1996  相似文献   

9.
A sulfite oxidase (SOx) purified from leaves of Syzygium cumini (Jamun) was immobilized covalently onto a gold nanoparticles (AuNPs)/chitosan (CHIT)/carboxylated multiwalled carbon nanotubes (cMWCNTs)/polyaniline (PANI) composite that was electrodeposited onto the surface of a gold (Au) electrode. A novel and highly sensitive sulfite biosensor was developed that used this enzyme electrode (SOx/AuNPs/CHIT/cMWCNT/PANI/Au) as the working electrode, Ag/AgCl as the standard electrode, and Pt wire as the auxiliary electrode. The modified electrode was characterized by Fourier transform infrared (FTIR) spectroscopy, cyclic voltammetry (CV), scanning electron microscopy (SEM), and electrochemical impedance spectroscopy (EIS) before and after the immobilization of the SOx. The sensor produced its optimum response within 3 s when operated at 50 mVs−1 in 0.1 M phosphate buffer, pH 7.0, and at 35 °C. The linear range and detection limit of the sensor were 0.75–400 μM and 0.5 μM (S/N = 3), respectively. The biosensor was employed to determine sulfite levels in fruit juices and alcoholic beverages. The enzyme electrode was used 300 times over a period of three months when stored at 4 °C.  相似文献   

10.
《Comptes Rendus Chimie》2016,19(7):789-797
A smectite-based inorganic-organic hybrid material was prepared by a one-step intercalation of cetyltrimethylammonium ions and thiourea within the interlayer space of montmorillonite (MT). The surface and textural properties of the resulting material were examined using several techniques (X-ray diffraction, elementary analysis and N2 adsorption-desorption experiments (BET method)) that demonstrated the presence of both modifiers in the clay mineral structure. The presence of thiourea molecules in the modified MT greatly improved its ability towards the fixation of Pb2+ and Cd2+ ions when the organoclay material was used for sensing purposes as a glassy carbon electrode modifier. The electro-analytical procedure was based on the chemical accumulation of both analytes under open-circuit conditions, followed by the detection of the preconcentrated species using square wave voltammetry. Upon optimization of different parameters likely to influence the electrode response, linear calibration graphs were obtained in the concentration ranges from 0.1 to 1 μM and 0.01 to 0.1 μM for Cd2+ and Pb2+, respectively, leading to low limits of detection (4.2 × 10−10 M for Pb2+and 1.2 × 10−9 M for Cd2+).  相似文献   

11.
Carbon modified by the reduction of aromatic diazonium derivatives was first used as electrode for the electrochemical stripping analysis of heavy metals. As a model, the glassy carbon electrode was modified with benzoic acid by electrochemical reduction of diazobenzoic acid, and the resulting modified electrodes were used for determination of Cd2+ and Pb2+. The anodic peak currents of cadmium and lead at the benzoic acid-modified glassy carbon electrode are 7.2 and 6 times of that at the bare glassy carbon electrode. A linear response was observed for Pb2+ and Cd2+ in the range of 0.5–50 μg/l. The detection limits are 0.20 μg/l for Pb2+ and 0.13 μg/l for Cd2+. The relative standard deviations for six consecutive measurements of 50 μg/l Cd2+ and 50 μg/l Pb2+ are 0.82% and 3.02%, respectively. Applicability of the sensor to the determination of Cd2+ and Pb2+ in sewerage samples was demonstrated.  相似文献   

12.
In this paper, an electrochemical sensor for sensitive and convenient determination of salicylic acid (SA) was constructed using well-aligned multiwalled carbon nanotubes as electrode material. Compared to the glassy carbon electrode, the electro-oxidation of SA significantly enhanced at the multiwalled carbon nanotube (MWCNT) electrode. The MWCNT electrode shows a sensitivity of 59.25 μA mM−1, a low detection limit of 0.8 × 10−6 M and a good response linear range with SA concentration from 2.0 × 10−6 to 3.0 × 10−3 M. In addition, acetylsalicylic acid was determined indirectly after hydrolysis to SA and acetic acid, which simplified the detection process. The mechanism of electrochemical oxidation of SA at the MWCNT electrode is also discussed.  相似文献   

13.
The electrochemical behaviour of glassy carbon electrodes coated with multiwalled carbon nanotubes (MWCNT) from three different sources and with different loadings has been compared, with a view to sensor applications. Additionally, poly(neutral red) (PNR) was electrosynthesised by potential cycling on bare glassy carbon and on MWCNT-modified glassy carbon electrodes, and characterised by cyclic voltammetry and scanning electron microscopy. Well-defined voltammetric responses were observed for hexacyanoferrate (II) oxidation with differences between the MWCNT types as well as from loading. The MWCNT and PNR/MWCNT-modified electrodes were applied to the oxidative determination of ascorbate, the electrocatalytic effects observed varying according to the type of nanotubes. Comparison was made with electrodes surface-modified by graphite powder. All modified electrode configurations with and without PNR were successfully employed for ascorbate oxidation at +0.05 V vs saturated calomel electrode with detection limits down to 4 μM; good operational stability and storage stability were also obtained.  相似文献   

14.
The electrocatalytic oxidation of quinine sulfate (QS) was investigated at a glassy carbon electrode, modified by a gel containing multiwall carbon nanotubes (MWCNTs) and room-temperature ionic liquid of 1-Butyl-3-methylimidazolium hexafluorophate (BMIMPF6) in 0.10 M of phosphate buffer solution (PBS, pH 6.8). It was found that an irreversible anodic oxidation peak of QS with E pa as 0.99 V appeared at MWCNTs-RTIL/glassy carbon electrode (GCE). The electrode reaction process was a diffusion-controlled one and the electrochemical oxidation involved two electrons transferring and two protons participation. Furthermore, the charge-transfer coefficient (α), diffusion coefficient (D), and electrode reaction rate constant (k f) of QS were found to be 0.87, 7.89 × 10−3 cm2⋅s−1 and 3.43 × 10−2 s−1, respectively. Under optimized conditions, linear calibration curves were obtained over the QS concentration range 3.0 × 10−6 to 1.0 × 10−4 M by square wave voltammetry, and the detection limit was found to be 0.44 μM based on the signal-to-noise ratio of 3. In addition, the novel MWCNTs-RTIL/GCE was characterized by the electrochemical impedance spectroscopy and the proposed method has been successfully applied in the electrochemical quantitative determination of quinine content in commercial injection samples and the determination results could meet the requirement.  相似文献   

15.
In this work, carbon electrodes modified with aminophenols were developed for the production of pesticides biosensors based on acetylcholinesterase. The polymers were potentiodynamically deposited on a graphite electrode surface by the oxidation of monomers, 2-aminophenol, 3-aminophenol and 4-aminophenol. The electrochemical behaviour and surface analysis of the electrodes modified by polyaminophenols non-immobilized and immobilized on acetylcholinesterase were studied by cyclic voltammetry, electrochemical impedance spectroscopy and atomic force microscopy. Roughness values obtained for graphite electrodes modified with poly(4-aminophenol) and poly(4-aminophenol)/acetylcholinesterase were 174 and 86 nm, respectively. The acetylcholinesterase enzyme was immobilized on a graphite and a graphite modified with poly(4-aminophenol), and these electrodes were coupled in the flow system. Potentiometric response due to hydrogen ions generated by an enzymatic system in the presence of acetylcholine chloride substrate was evaluated. The results showed that the graphite/poly(4-aminhophenol) sensor presents high sensitivity to hydrogen ions when compared with other graphite/polyaminophenols sensors. The biosensor coupled in a continuous flow system was employed for the detection of dichlorvos. The detection and quantification limits were 0.8 and 2.4 μmol L−1 dichlorvos, respectively. This sensor reveals an efficient and promising material for biomolecules immobilization.  相似文献   

16.
《Arabian Journal of Chemistry》2020,13(11):7809-7819
Nitrogen doped carbon nanodots (NDCNDs) and nanosized cobalt tetra aminophenoxy phthalocyanines (CoTAPhPcNPs) modified glassy carbon electrodes have been successfully used in the simultaneous detection of aspirin (ASA), ibuprofen (IBU) and indomethacin (INDO). Scanning electron microscopy (SEM), transmission electron microscopy (TEM), UV–Vis spectroscopy, Fourier transform infrared spectroscopy (FTIR), cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) were used to probe the nature of the synthesized nanomaterials. Sequential deposition of the nanomaterials on the glassy carbon electrode yielded CoTAPhPcNPs-NDCNDs-GCE with remarkable electrocatalytic performance. Electro-oxidation of the drugs at the electrode surface was first order. This work demonstrates the synergic effect of the two nanomaterials towards simultaneous electrocatalytic detection of the drugs. Superior detection limits of ASA, IBU and INDO being 9.66 × 10−9 M, 4.19 × 10−9 M and 7.2 × 10−9 M, respectively, were obtained using differential pulse voltammetry. The developed sensor could detect two of the three (ibuprofen and indomethacin) simultaneously at significantly different potentials and exhibited remarkable reproducibility after a regeneration step.  相似文献   

17.
A novel amperometric hydrogen peroxide sensor was proposed by co-immobilizing new methylene blue (NMB) and Horseradish peroxidase (HRP) on glassy carbon electrode through covalent binding. The electrochemical behavior of the sensor was studied extensively in 0.1 mol/L phosphate buffering solution (pH = 7.0). The experiments showed NMB could effectively transfer electrons between hydrogen peroxide and glassy carbon electrode. The electron transfer coefficient and apparent reaction rate constant were determined to be 0.861 and 1.27 s−1. The kinetic characteristics and responses of sensor on H2O2 were investigated. The Michaelis constant is 8.27 mol/L and the linear dependence of current on H2O2 is in the range of 2.5–100 μmol/L. At the same time, the effects of solution pH, buffer capacity, and temperature on the sensor were examined. Translated from Chemistry, 2006, 23(8): 916–920 [译自: 化学通报]  相似文献   

18.
Platinum nanoparticles were successfully deposited within a multiwalled carbon nanotube (MWCNT)–Nafion matrix by a cyclic voltammetry method. A Pt(IV) complex was reduced to platinum nanoparticles on the surface of MWCNTs. The resulting Pt nanoparticles were characterized by scanning electron microscopy, transmission electron microscopy, and energy-dispersive X-ray spectroscopy. The Pt–MWCNT–Nafion nanocomposite film-modified glassy carbon electrode had a sharp hydrogen desorption peak at about −0.2 V vs. Ag/AgCl (3 M) in a solution of 0.5 M H2SO4, which is directly related to the electrochemical activity of the Pt nanoparticles presented on the surface of MWCNTs. The electrocatalytic properties of the Pt–MWCNT–Nafion nanocomposite-modified glassy carbon electrode for methanol electrooxidation were investigated by cyclic voltammetry in a 2 M CH3OH + 1 M H2SO4 solution. In comparison with the Pt-coated glassy carbon electrode and the Pt–Nafion modified glassy carbon electrode, the Pt–MWCNT–Nafion-modified electrode had excellent electrocatalytic activity toward methanol electrooxidation. The stability of the Pt–MWCNT–Nafion nanocomposite-modified electrode had also been evaluated.  相似文献   

19.
Glassy carbon electrode modified with electrodeposited nickel oxide nanoparticles (NiOxNPs) was used as electrocatalyst for oxidation of omeprazole and pentoperazole in alkaline solution. The modified electrode exhibited efficient electrocatalytic activity for the oxidation of omeprazole and pentoperazole with relatively high sensitivity, excellent stability, and long lifetime. Hydrodynamic amperometric method is used for determination of selected analytes. Under optimized condition, the linear concentration range, detection limit, and sensitivity of modified electrode toward omeprazole detection are 4.5–120 μM, 0.4 μM (at signal to noise 3), and 40.1 nA μM−1 cm−2, respectively. For pantoperazole, hydrodynamic amperometric determination yielded calibration curve with linear range of 2.5–180 μM, detection limit of 0.2 μM, and sensitivity of 39.2 nA μM−1 cm−2, respectively. The proposed method was successfully applied to pentoperazole and omeprazole determination in drug samples.  相似文献   

20.
This study was conducted to investigate the effect of time on cadmium (109Cd) availability in four typical soils of the Danubian Lowland through the modified Tessier’s sequential extraction procedure as well as its short-term sorption in the bulk soils and their two grain-size fractions. Results of the fractionation study showed that there were significant changes in the proportional distribution of cadmium in all studied soils during 180 days of incubation with spiked cadmium. Generally, the proportions of cadmium associated with the most weakly bound fractions (water soluble and exchangeable) tended to decrease with corresponding increases in the residual fraction during the incubation. The extent of cadmium sorption in all studied soils was high, exceeding 95% of the spiked amount after 60 min of incubation, likely due to slightly alkaline character of the soils. The finding that soil particles less than 10 μm sorbed up to 51% of the spiked cadmium in soils is of great importance since they could play a role in colloid-facilitated transport of cadmium through preferential pathways, as previously observed in the region. Addition of 1 M ammonium nitrate into the soil solution generally decreased cadmium sorption in all four soils. The lowest extractabilities of Cd were obtained using 1 M ammonium nitrate as a single extractant, whereas 0.025 M ammonium ethylenediaminetetraacetate solution extracted the highest proportions of cadmium from the studied soils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号