首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Some effective expression is obtained for the elements of an admissible set \(\mathbb{H}\mathbb{Y}\mathbb{P}(\mathfrak{M})\) as template sets. We prove the Σ-reducibility of \(\mathbb{H}\mathbb{Y}\mathbb{P}(\mathfrak{M})\) to \(\mathbb{H}\mathbb{F}(\mathfrak{M})\) for each recursively saturated model \(\mathfrak{M}\) of a regular theory, give a criterion for uniformization in \(\mathbb{H}\mathbb{Y}\mathbb{P}(\mathfrak{M})\) for each recursively saturated model \(\mathfrak{M}\), and establish uniformization in \(\mathbb{H}\mathbb{Y}\mathbb{P}(\mathfrak{N})\) and \(\mathbb{H}\mathbb{Y}\mathbb{P}(\Re ')\), where \(\mathfrak{N}\) and \(\Re '\) are recursively saturated models of arithmetic and real closed fields. We also prove the absence of uniformization in \(\mathbb{H}\mathbb{F}(\mathfrak{M})\) and \(\mathbb{H}\mathbb{Y}\mathbb{P}(\mathfrak{M})\) for each countably saturated model \(\mathfrak{M}\) of an uncountably categorical theory, and give an example of this type of theory with definable Skolem functions. Furthermore, some example is given of a model of a regular theory with Σ-definable Skolem functions, but lacking definable Skolem functions in every extension by finitely many constants.  相似文献   

2.
3.
4.
Let \(\mathfrak {g}\) be a simple complex Lie algebra and let \(\mathfrak {t} \subset \mathfrak {g}\) be a toral subalgebra of \(\mathfrak {g}\). As a \(\mathfrak {t}\)-module \(\mathfrak {g}\) decomposes as
$$\mathfrak{g} = \mathfrak{s} \oplus \left( \oplus_{\nu \in \mathcal{R}}~ \mathfrak{g}^{\nu}\right)$$
where \(\mathfrak {s} \subset \mathfrak {g}\) is the reductive part of a parabolic subalgebra of \(\mathfrak {g}\) and \(\mathcal {R}\) is the Kostant root system associated to \(\mathfrak {t}\). When \(\mathfrak {t}\) is a Cartan subalgebra of \(\mathfrak {g}\) the decomposition above is nothing but the root decomposition of \(\mathfrak {g}\) with respect to \(\mathfrak {t}\); in general the properties of \(\mathcal {R}\) resemble the properties of usual root systems. In this note we study the following problem: “Given a subset \(\mathcal {S} \subset \mathcal {R}\), is there a parabolic subalgebra \(\mathfrak {p}\) of \(\mathfrak {g}\) containing \(\mathcal {M} = \oplus _{\nu \in \mathcal {S}} \mathfrak {g}^{\nu }\) and whose reductive part equals \(\mathfrak {s}\)?”. Our main results is that, for a classical simple Lie algebra \(\mathfrak {g}\) and a saturated \(\mathcal {S} \subset \mathcal {R}\), the condition \((\text {Sym}^{\cdot }(\mathcal {M}))^{\mathfrak {s}} = \mathbb {C}\) is necessary and sufficient for the existence of such a \(\mathfrak {p}\). In contrast, we show that this statement is no longer true for the exceptional Lie algebras F4,E6,E7, and E8. Finally, we discuss the problem in the case when \(\mathcal {S}\) is not saturated.
  相似文献   

5.
Let m be a positive integer \(\ge \)3 and \(\lambda =2\cos \frac{\pi }{m}\). The Hecke group \(\mathfrak {G}(\lambda )\) is generated by the fractional linear transformations \(\tau + \lambda \) and \(-\frac{1}{\tau }\) for \(\tau \) in the upper half plane \(\mathbb H\) of the complex plane \(\mathbb C\). We consider a set of functions \(\mathfrak {f}_0, \mathfrak {f}_i\) and \(\mathfrak {f}_{\infty }\) automorphic with respect to \(\mathfrak {G}(\lambda )\), constructed from the conformal mapping of the fundamental domain of \(\mathfrak {G}(\lambda )\) to the upper half plane \(\mathbb H\), and establish their connection with the Legendre functions and a class of hyper-elliptic functions. Many well-known classical identities associated with the cases of \(\lambda =1\) and 2 are preserved. As an application, we will establish a set of identities expressing the reciprocal of \(\pi \) in terms of the hypergeometric series.  相似文献   

6.
For a singular Riemannian foliation \(\mathcal {F}\) on a Riemannian manifold M, a curve is called horizontal if it meets the leaves of \(\mathcal {F}\) perpendicularly. For a singular Riemannian foliation \(\mathcal {F}\) on a unit sphere \(\mathbb {S}^{n}\), we show that if \(\mathcal {F}\) satisfies some properties, then the horizontal diameter of \(\mathbb {S}^{n}\) is \(\pi \), i.e., any two points in \(\mathbb {S}^{n}\) can be connected by a horizontal curve of length \(\le \pi \).  相似文献   

7.
Let \(\mathfrak {M}\) be a von Neumann algebra, and let \(\mathfrak {T}:\mathfrak {M} \rightarrow \mathfrak {M}\) be a bounded linear map satisfying \(\mathfrak {T}(P^{2}) = \mathfrak {T}(P)P + \Psi (P,P)\) for each projection P of \(\mathfrak {M}\), where \(\Psi :\mathfrak {M} \times \mathfrak {M} \rightarrow \mathfrak {M}\) is a bi-linear map. If \(\Psi \) is a bounded l-semi Hochschild 2-cocycle, then \(\mathfrak {T}\) is a left centralizer associated with \(\Psi \). By applying this conclusion, we offer a characterization of left \(\sigma \)-centralizers, generalized derivations and generalized \(\sigma \)-derivations on von Neumann algebras. Moreover, it is proved that if \(\mathfrak {M}\) is a commutative von Neumann algebra and \(\sigma :\mathfrak {M} \rightarrow \mathfrak {M}\) is an endomorphism, then every bi-\(\sigma \)-derivation \(D:\mathfrak {M} \times \mathfrak {M} \rightarrow \mathfrak {M}\) is identically zero.  相似文献   

8.
Let G be a locally compact abelian group, \(\omega \) be a weighted function on \({\mathbb {R}}^+\), and let \(\mathfrak {D}\) be the Banach algebra \(L_0^\infty (G)^*\) or \(L_0^\infty (\omega )^*\). In this paper, we investigate generalized derivations on the noncommutative Banach algebra \(\mathfrak {D}\). We characterize \(\textsf {k}\)-(skew) centralizing generalized derivations of \(\mathfrak {D}\) and show that the zero map is the only \(\textsf {k}\)-skew commuting generalized derivation of \(\mathfrak {D}\). We also investigate the Singer–Wermer conjecture for generalized derivations of \(\mathfrak {D}\) and prove that the Singer–Wermer conjecture holds for a generalized derivation of \(\mathfrak {D}\) if and only if it is a derivation; or equivalently, it is nilpotent. Finally, we investigate the orthogonality of generalized derivations of \(L_0^\infty (\omega )^*\) and give several necessary and sufficient conditions for orthogonal generalized derivations of \(L_0^\infty (\omega )^*\).  相似文献   

9.
We show that symmetric block designs \({\mathcal {D}}=({\mathcal {P}},{\mathcal {B}})\) can be embedded in a suitable commutative group \({\mathfrak {G}}_{\mathcal {D}}\) in such a way that the sum of the elements in each block is zero, whereas the only Steiner triple systems with this property are the point-line designs of \({\mathrm {PG}}(d,2)\) and \({\mathrm {AG}}(d,3)\). In both cases, the blocks can be characterized as the only k-subsets of \(\mathcal {P}\) whose elements sum to zero. It follows that the group of automorphisms of any such design \(\mathcal {D}\) is the group of automorphisms of \({\mathfrak {G}}_\mathcal {D}\) that leave \(\mathcal {P}\) invariant. In some special cases, the group \({\mathfrak {G}}_\mathcal {D}\) can be determined uniquely by the parameters of \(\mathcal {D}\). For instance, if \(\mathcal {D}\) is a 2-\((v,k,\lambda )\) symmetric design of prime order p not dividing k, then \({\mathfrak {G}}_\mathcal {D}\) is (essentially) isomorphic to \(({\mathbb {Z}}/p{\mathbb {Z}})^{\frac{v-1}{2}}\), and the embedding of the design in the group can be described explicitly. Moreover, in this case, the blocks of \(\mathcal {B}\) can be characterized also as the v intersections of \(\mathcal {P}\) with v suitable hyperplanes of \(({\mathbb {Z}}/p{\mathbb {Z}})^{\frac{v-1}{2}}\).  相似文献   

10.
For each rank metric code \(\mathcal {C}\subseteq \mathbb {K}^{m\times n}\), we associate a translation structure, the kernel of which is shown to be invariant with respect to the equivalence on rank metric codes. When \(\mathcal {C}\) is \(\mathbb {K}\)-linear, we also propose and investigate other two invariants called its middle nucleus and right nucleus. When \(\mathbb {K}\) is a finite field \(\mathbb {F}_q\) and \(\mathcal {C}\) is a maximum rank distance code with minimum distance \(d<\min \{m,n\}\) or \(\gcd (m,n)=1\), the kernel of the associated translation structure is proved to be \(\mathbb {F}_q\). Furthermore, we also show that the middle nucleus of a linear maximum rank distance code over \(\mathbb {F}_q\) must be a finite field; its right nucleus also has to be a finite field under the condition \(\max \{d,m-d+2\} \geqslant \left\lfloor \frac{n}{2} \right\rfloor +1\). Let \(\mathcal {D}\) be the DHO-set associated with a bilinear dimensional dual hyperoval over \(\mathbb {F}_2\). The set \(\mathcal {D}\) gives rise to a linear rank metric code, and we show that its kernel and right nucleus are isomorphic to \(\mathbb {F}_2\). Also, its middle nucleus must be a finite field containing \(\mathbb {F}_q\). Moreover, we also consider the kernel and the nuclei of \(\mathcal {D}^k\) where k is a Knuth operation.  相似文献   

11.
Miloš S. Kurilić 《Order》2017,34(2):235-251
For a partial order \(\mathbb {P}\) having infinite antichains by \(\mathfrak {a}(\mathbb {P})\) we denote the minimal cardinality of an infinite maximal antichain in \(\mathbb {P}\) and investigate how does this cardinal invariant of posets behave in finite products. In particular we show that \(\min \{ \mathfrak {a}(\mathbb {P}),\mathfrak {p} (\text {sq} \mathbb {P}) \} \leq \mathfrak {a} (\mathbb {P}^{n} ) \leq \mathfrak {a} (\mathbb {P})\), for all \(n\in \mathbb {N}\), where \(\mathfrak {p} (\text {sq} \mathbb {P})\) is the minimal size of a centered family without a lower bound in the separative quotient of the poset \(\mathbb {P}\), or \(\mathfrak {p} (\text {sq} \mathbb {P})=\infty \), if there is no such family. So we have \(\mathfrak {a} (\mathbb {P} \times \mathbb {P})=\mathfrak {a} (\mathbb {P})\) whenever \(\mathfrak {p} (\text {sq} \mathbb {P})\geq \mathfrak {a} (\mathbb {P})\) and we show that, in addition, this equality holds for all posets obtained from infinite Boolean algebras of size ≤ø 1 by removing zero, all reversed trees, all atomic posets and, in particular, for all posets of the form \(\langle \mathcal {C} ,\subset \rangle \), where \(\mathcal {C}\) is a family of nonempty closed sets in a compact T 1-space containing all singletons. As a by-product we obtain the following combinatorial statement: If X is an infinite set and {A i ×B i :iI} an infinite partition of the square X 2, then at least one of the families {A i :iI} and {B i :iI} contains an infinite partition of X.  相似文献   

12.
Let G be a reductive algebraic group over an algebraically closed field of characteristic zero, and let \(\mathfrak{h}\) be an algebraic subalgebra of the tangent Lie algebra \(\mathfrak{g}\) of G. We find all subalgebras \(\mathfrak{h}\) that have no nontrivial characters and whose centralizers \(\mathfrak{U}(\mathfrak{g})^\mathfrak{h} \) and \(P(\mathfrak{g})^\mathfrak{h} \) in the universal enveloping algebra \(\mathfrak{U}(\mathfrak{g})\) and in the associated graded algebra \(P(\mathfrak{g})\), respectively, are commutative. For all these subalgebras, we prove that \(\mathfrak{U}(\mathfrak{g})^\mathfrak{h} = \mathfrak{U}(\mathfrak{h})^\mathfrak{h} \otimes \mathfrak{U}(\mathfrak{g})^\mathfrak{g} \) and \(P(\mathfrak{g})^\mathfrak{h} = P(\mathfrak{h})^\mathfrak{h} \otimes P(\mathfrak{g})^\mathfrak{g} \). Furthermore, we obtain a criterion for the commutativity of \(\mathfrak{U}(\mathfrak{g})^\mathfrak{h} \) in terms of representation theory.  相似文献   

13.
The first main theorem of this paper asserts that any \((\sigma , \tau )\)-derivation d, under certain conditions, either is a \(\sigma \)-derivation or is a scalar multiple of (\(\sigma - \tau \)), i.e. \(d = \lambda (\sigma - \tau )\) for some \(\lambda \in \mathbb {C} \backslash \{0\}\). By using this characterization, we achieve a result concerning the automatic continuity of \((\sigma , \tau \))-derivations on Banach algebras which reads as follows. Let \(\mathcal {A}\) be a unital, commutative, semi-simple Banach algebra, and let \(\sigma , \tau : \mathcal {A} \rightarrow \mathcal {A}\) be two distinct endomorphisms such that \(\varphi \sigma (\mathbf e )\) and \(\varphi \tau (\mathbf e )\) are non-zero complex numbers for all \(\varphi \in \Phi _\mathcal {A}\). If \(d : \mathcal {A} \rightarrow \mathcal {A}\) is a \((\sigma , \tau )\)-derivation such that \(\varphi d\) is a non-zero linear functional for every \(\varphi \in \Phi _\mathcal {A}\), then d is automatically continuous. As another objective of this research, we prove that if \(\mathfrak {M}\) is a commutative von Neumann algebra and \(\sigma :\mathfrak {M} \rightarrow \mathfrak {M}\) is an endomorphism, then every Jordan \(\sigma \)-derivation \(d:\mathfrak {M} \rightarrow \mathfrak {M}\) is identically zero.  相似文献   

14.
In this paper, we study free probability on tensor product algebra \(\mathfrak {M} = M\,\otimes _{\mathbb {C}}\,{\mathcal {A}}\) of a \(W^{*}\)-algebra M and the algebra \({\mathcal {A}}\), consisting of all arithmetic functions equipped with the functional addition and the convolution. We study free-distributional data of certain elements of \(\mathfrak {M}\), and study freeness on \(\mathfrak {M}\), affected by fixed primes.  相似文献   

15.
Given a countable algebraic structure \(\mathfrak{B}\) with no degree we find sufficient conditions for the existence of a countable structure \(\mathfrak{A}\) with the following properties: (1) for every isomorphic copy of \(\mathfrak{A}\) there is an isomorphic copy of \(\mathfrak{A}\) Turing reducible to the former; (2) there is no uniform effective procedure for generating a copy of \(\mathfrak{A}\) given a copy of \(\mathfrak{B}\) even having been enriched with an arbitrary finite tuple of constants.  相似文献   

16.
This paper consists of two parts. First, motivated by classic results, we determine the subsets of a given nilpotent Lie algebra \(\mathfrak {g}\) (respectively, of the Grassmannian of two-planes of \(\mathfrak {g}\)) whose sign of Ricci (respectively, sectional) curvature remains unchanged for an arbitrary choice of a positive definite inner product on \(\mathfrak {g}\). In the second part we study the subsets of \(\mathfrak {g}\) which are, for some inner product, the eigenvectors of the Ricci operator with the maximal and with the minimal eigenvalue, respectively. We show that the closure of these subsets is the whole algebra \(\mathfrak {g}\), apart from two exceptional cases: when \(\mathfrak {g}\) is two-step nilpotent and when \(\mathfrak {g}\) contains a codimension one abelian ideal.  相似文献   

17.
We discuss the proof of Kazhdan and Lusztig of the equivalence of the Drinfeld category \({\mathcal D}({\mathfrak g},\hbar)\) of \({\mathfrak g}\)-modules and the category of finite dimensional \(U_q{\mathfrak g}\)-modules, \(q=e^{\pi i\hbar}\), for \(\hbar\in{\mathbb C}\setminus{\mathbb Q}^*\). Aiming at operator algebraists the result is formulated as the existence for each \(\hbar\in i{\mathbb R}\) of a normalized unitary 2-cochain \({\mathcal F}\) on the dual \(\hat G\) of a compact simple Lie group G such that the convolution algebra of G with the coproduct twisted by \({\mathcal F}\) is *-isomorphic to the convolution algebra of the q-deformation G q of G, while the coboundary of \({\mathcal F}^{-1}\) coincides with Drinfeld’s KZ-associator defined via monodromy of the Knizhnik–Zamolodchikov equations.  相似文献   

18.
19.
We provide a categorification of \(\mathfrak {q}(2)\)-crystals on the singular \(\mathfrak {gl}_{n}\)-category \({\mathcal O}_{n}\). Our result extends the \(\mathfrak {gl}_{2}\)-crystal structure on \(\text {Irr} ({\mathcal O}_{n})\) induced from the work of Bernstein-Frenkel-Khovanov. Further properties of the \({\mathfrak q}(2)\)-crystal \(\text {Irr} ({\mathcal O}_{n})\) are also discussed.  相似文献   

20.
Let \(\mathcal {F}\) be a quadratically constrained, possibly nonconvex, bounded set, and let \(\mathcal {E}_1, \ldots , \mathcal {E}_l\) denote ellipsoids contained in \(\mathcal {F}\) with non-intersecting interiors. We prove that minimizing an arbitrary quadratic \(q(\cdot )\) over \(\mathcal {G}:= \mathcal {F}{\setminus } \cup _{k=1}^\ell {{\mathrm{int}}}(\mathcal {E}_k)\) is no more difficult than minimizing \(q(\cdot )\) over \(\mathcal {F}\) in the following sense: if a given semidefinite-programming (SDP) relaxation for \(\min \{ q(x) : x \in \mathcal {F}\}\) is tight, then the addition of l linear constraints derived from \(\mathcal {E}_1, \ldots , \mathcal {E}_l\) yields a tight SDP relaxation for \(\min \{ q(x) : x \in \mathcal {G}\}\). We also prove that the convex hull of \(\{ (x,xx^T) : x \in \mathcal {G}\}\) equals the intersection of the convex hull of \(\{ (x,xx^T) : x \in \mathcal {F}\}\) with the same l linear constraints. Inspired by these results, we resolve a related question in a seemingly unrelated area, mixed-integer nonconvex quadratic programming.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号