首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In order to improve the ionic conductivity of solid polymer electrolyte by controlling ion(alkali metal ion)–dipole(ether oxygen) interaction, two kinds of modification were adopted on oligo(oxyethylene) (OOE). One is the capping of terminal hydroxyl groups of OOE with methyl or acetyl groups. The other is the replacement of the center ethylene group of OOE with methylene or propylene group. Ion–dipole interaction was analyzed by measuring the ion dissociation, ion conduction and Tg of Nafion/modified OOE composite films. The modification of the end groups was more effective than that of the center group in increasing ionic conductivity. The methyl group is superior to the acetyl group as the end group of OOE for lithium ion conduction.  相似文献   

2.
We use molecular dynamics simulations to study the melting of pentane and hexane monolayers adsorbed on the basal plane of graphite. For both of these systems, the temperature-dependent structures and the melting temperatures agree well with experiment. A detailed analysis reveals that a mechanism involving the promotion of molecules to the second layer underlies melting in these systems. In the second-layer promotion mechanism, a small fraction of molecules transition into the second layer around the melting temperature, leaving vacant space in the first layer to facilitate disordering. The second-layer promotion mechanism arises because of the weaker molecule-surface interaction in our study than that in previous studies. The weaker molecule-surface interaction is consistent with experimental temperature-programmed desorption studies.  相似文献   

3.
Pulsed plasma polymerization of N-isopropylacrylamide leads to the deposition of thermoresponsive films. The reversible (switching) behavior of these poly(N-isopropylacrylamide) surfaces has been exemplified by screening the adsorption of fibrinogen and fluorescein isothiocyanate labeled bovine serum albumin proteins by surface plasmon resonance (SPR) and fluorescence microscopy at low and elevated temperatures.  相似文献   

4.
A facile method using layer-by-layer assembly of silica particles is proposed to prepare raspberry-like particulate films for the fabrication of superhydrophobic surfaces. Silica particles 0.5 microm in diameter were used to prepare a surface with a microscale roughness. Nanosized silica particles were then assembled on the particulate film to construct a finer structure on top of the coarse one. After surface modification with dodecyltrichlorosilane, the advancing and receding contact angles of water on the dual-sized structured surface were 169 and 165 degrees , respectively. The scale ratio of the micro/nano surface structure and the regularity of the particulate films on the superhydrophobic surface performance are discussed.  相似文献   

5.
An amperometric biosensor based on tyrosinase immobilized in silicate/Nafion composite film has been developed for the determination of phenolic compounds. The Nafion polymer in the composite was used not only to overcome the brittleness of the pure sol-gel-derived silicate film but also to increase the long-term stability of the biosensor. Tyrosinase was immobilized by a thin film of silicate/Nafion composite on a glassy carbon electrode. Phenolic compounds were determined by the direct reduction of biocatalytically-liberated quinone species at −200 mV versus Ag/AgCl (3 M NaCl). The process parameters for the fabrication of the enzyme electrode and various experimental variables such as pH and operating potential were explored for optimum analytical performance of the enzyme electrode. The biosensor can reach 95% of steady-state current in about 15 s. The sensitivities of the biosensor for catechol and phenol were 200 and 46 mA/M, respectively. A detection limit of 0.35 mM catechol was obtained with a signal-to-noise ratio of 3. The enzyme electrode retained 74% of its initial activity after 2 weeks of storage in 50 mM phosphate buffer at pH 7.  相似文献   

6.
We prepared Nafion/PTFE (NF) and zirconium phosphate (ZrP) hybridized Nafion/PTFE composite membranes (NF–ZrP). NF–ZrP composite membranes were prepared via two processes. One is impregnating sub-μm porous PTFE membrane directly in a Nafion/ZrOCl2 solution (NF–Zr–d). The other is impregnating sub-μm porous PTFE membrane in a Nafion solution to prepare NF composite membrane, and then the NF membrane was impregnated in a ZrOCl2 aqueous solution via in situ precipitation method (NF–Zr–I). The ZrOCl2 inserted in NF composite membranes was then reacted with phosphoric acid to form ZrP and thus NF–ZrP–d and NF–ZrP–I composite membranes were obtained. The direct methanol fuel cell (DMFC) performances of membrane electrode assemblies prepared from Nafion-117, NF, NF–ZrP–d, and NF–ZrP–I composite membranes were investigated. The effects of introducing sub-μm porous PTFE film and ZrP particles into Nafion membranes on the DMFC performance were investigated. The influence of ZrP hybridizing process into NF membranes (the process of preparing NF–ZrP–I is inserting ZrOCl2 into NF membranes after Nafion is annealed and the process of preparing NF–ZrP–d is mixing ZrOCl2 into a Nafion solution before Nafion is annealed) on the morphology of NF–ZrP composite membranes and thus on the DMFC performance was also discussed.  相似文献   

7.
The effect of the surface energy gamma, disjoining pressure, Pi, and roughness on the dewetting of molecularly thin liquid lubricant films on magnetic disks, which have sub-nanometer surface topography, has been investigated by visualizing the dewetting process directly using ellipsometric microscopy. The dewetting process of thin liquids on the rough surface is determined not only by the well-known instability of films, which is determined by the sign of dPi/dh, but also by the sign of Pi and the surface topography of the substrate even if its roughness is of the sub-nanometer order. The dewetting film formed small droplets, which were not along the surface topography of the substrate, when Pi < 0. On the other hand, it formed grooves along the surface topography with a sub-nanometer roughness when Pi > 0. Moreover, the sub-nanometer roughness initiated the dewetting of the metastable liquid thin films.  相似文献   

8.
通过电沉积金属铜于SWNTs/Nafion修饰的玻碳电极表面构建了一种经济且简单易制备的非酶尿酸传感器.采用扫描电镜和能谱仪表征了纳米材料的形貌和成分,并考察了不同扫速和pH值对修饰电极的影响.在优化条件下,尿酸的线性范围为0.1~1000 μmol·L-1,检出限(S/N =3)为0.058 5iμmol·L-1.采用标准加入法检测人体血清中尿酸的回收率为97.2%~103.9%,相对标准偏差(RSD)为0.04%~0.11%.该非酶法与GOD-POD酶法的结果高度一致,且传感器经济易制备、灵敏性高、稳定性好、重现性高.  相似文献   

9.
Measurements of the mechanical and electrical properties of Nafion and Nafion/titania composite membranes in constrained environments are reported. The elastic and plastic deformation of Nafion‐based materials decreases with both the temperature and water content. Nafion/titania composites have slightly higher elastic moduli. Thecomposite membranes exhibit less strain hardening than Nafion. Composite membranes also show a reduction in the long‐time creep of ~40% in comparison with Nafion. Water uptake is faster in Nafion membranes recast from solution in comparison with extruded Nafion. The addition of 3–20 wt % titania particles has minimal effect on the rate of water uptake. Water sorption by Nafion membranes generates a swelling pressure of ~0.55 MPa in 125‐μm membranes. The resistivity of Nafion increases when the membrane is placed under a load. At 23 °C and 100% relative humidity, the resistivity of Nafion increases by ~15% under an applied stress of 7.5 MPa. There is a substantial hysteresis in the membrane resistivity as a function of the applied stress depending on whether the pressure is increasing or decreasing. The results demonstrate how the dynamics of water uptake and loss from membranes are dependent on physical constraints, and these constraints can impact fuel cell performance. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 2327–2345, 2006  相似文献   

10.
A facile method to produce very hydrophobic surface was developed simply using the mixture of TiO(2) nanoparticles and poly(methyl methacrylate) (PMMA). When the volume ratio of TiO(2) to PMMA is between 35 vol.% and 50 vol.%, the mixture of two hydrophilic materials became very hydrophobic. Analysis of the molecular structure by infrared spectroscopy shows that the preferential orientation and attachment of a carbonyl group of a polymer molecule to the surface of TiO(2) nanoparticles play a critical role in the appearance of the strong hydrophobicity. When this composite was exposed to UV light, PMMA on the surface of the mixture film was decomposed through a photocatalytic reaction and the very hydrophobic surface turned to the superhydrophilic one. The superhydrophilic property of UV-irradiated composite lasts as long as several months. This long lasting superhydrophilicity is ascribed to the porous structure, which provides high roughness and strong capillary interaction. Easy transition from strong hydrophobicity to superhydrophilicity in TiO(2)/PMMA composites could be applied to designing high contrast hydrophilic/hydrophobic patterns.  相似文献   

11.
In general, the high electrical conductivity (EC) comes into conflict with the good flexibility and high strength of carbon nanotube (CNT)/polyaniline (PANI) composites. In other words, a high CNT content will bring about a high EC but lead to a low flexibility and strength due to the CNT‐constrained matrix deformation and CNT aggregation. In this work, a highly conductive, flexible and strong CNT/PANI composite film prepared via a facile solvent‐evaporation method is readily obtained by a cold stretching. The cold stretching is conducted at room temperature for the CNT/PANI film. It is observed that the cold stretching process leads to an unexpectedly enhanced EC. The as‐obtained EC of 231 S/cm is much higher than that (2 – 50 S/cm) of the previously reported CNT/PANI composite films. Meanwhile, the strength is obviously improved over that of the pure PANI film and the good flexibility is maintained to a high degree by the introduction of a proper CNT content. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 1575–1585  相似文献   

12.
Nafion membranes were modified by chemical polymerization of aniline using ammonium peroxodisulfate as the oxidant. The Nafion-polyaniline composite membranes were extensively characterized using scanning electron microscopy (SEM), atomic force microscopy (AFM), infrared (FTIR-ATR) and X-ray photoelectron spectroscopy (XPS), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), and ion-exchange capacity measurements. The transport properties were also evaluated by conductivity and electrodialysis measurements. The data show that when a high oxidant concentration (1 M (NH4)2S2O8) is used, polyaniline is mostly formed at the surface of the Nafion membrane with a higher proportion of oligomers. On the contrary, when 0.1 M oxidant is used, polyaniline is mostly formed inside the ionic domains of Nafion, blocking the pathway to ion transport and thus reducing the transport of Zn2+ as well as the transport of H+. These data were also compared to the data obtained with poly(styrene sulfonate)-PANI composite membranes.  相似文献   

13.
Peter Grosse 《Mikrochimica acta》1991,104(1-6):309-323
Thin solid films and surfaces are characterized by IR spectroscopy, based on reflectance and transmittance measurements, in particular with polarized light at oblique incidence. Thus two independent data sets fors- andp-polarization are available. Atp-polarization additional absorption lines at the zeros of the dielectric function are observed (Berreman-mode). The interpretation of the measured spectra is carried out by a fit procedure to simulate the observed spectra. As a result the specimens are characterized in terms of vibronic resonances and their oscillator strengths or concentration, thicknesses of various films in a stack of layers, profiles of depth depending chemical composition, or concentration and mobility of conduction electrons.All examples are relevant for application in technology, as microelectronics, thin film technology, catalysis, e.g. The results of the IR analysis are compared with those of other analytical methods as SIMS, RBS, and AES. The agreement is very good. One important advantage of the IR analysis, however, is the fact that it is a non-destructive method.  相似文献   

14.
Nafion films are birefringent. This optical property has been studied as a function of the draw ratio to obtain insight into the film morphology. At small draw ratios, the structure shows biaxial behavior. At higher draw ratios (>150%), Nafion can be considered to have a uniaxial symmetry. The influence on the birefringence of three different counterions (hydrogen, lithium, and tetramethylammonium) is negligible. Undrawn Nafion shows preorientation, which can be eliminated with drawing in the proper direction. X‐ray experiments suggest that the physical origin of the birefringence in Nafion is mainly due to the orientation of the polymer chains and not due to deformation or form birefringence. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 2857–2870, 2004  相似文献   

15.
In present work, hollow silica spheres (HSS)/Nafion® composite membranes were prepared by solution casting. The thermal properties, water retention, swelling behavior and proton conductivity of the composite membranes were explored. It was found that HSS dispersed well at micrometer scale in the obtained composite membranes by SEM and TEM observation. Thermal properties of composite membranes were improved than that of recast Nafion® membrane. Compared with the recast Nafion® membrane, the composite membranes showed higher water uptake and lower swelling degree at the temperature range from 40 to 100 °C. At the same HSS loading, the smaller the diameter of HSS in composite membranes, the more the water uptake, however, the swelling degree of composite membranes was increased. The proton conductivity of the composite membrane with 3–5 wt.% HSS (120 and 250 nm) increased distinctively at above 60 °C, reached the optimal value at 100 °C, and decreased slowly when the temperature exceeded 100 °C.  相似文献   

16.
A novel strategy of solid phase synthesis of N-cycloguanidinyl-formyl peptides has been established and investigated which involved coupling orthogonal protected diaminoacid with resin bound peptide, α-amino group deprotection, guanidinylation of α-amino group by bis-Cbz-1H-pyrazole-1-carboxamidine followed by cleavage and cyclization in solution, and finally removing Cbz by palladium catalyzed hydrogenation. Through this method, cycloguanidine could be introduced to either N-terminus or sidechain of designated peptides. The reaction conditions were facile, straightforward, and totally adaptive to common solid phase peptide synthesis strategy.  相似文献   

17.
Wetting and absorption of water drops on Nafion films   总被引:1,自引:0,他引:1  
Water drops on Nafion films caused the surface to switch from being hydrophobic to being hydrophilic. Contact angle hysteresis of >70 degrees between advancing and receding values were obtained by the Wilhelmy plate technique. Sessile drop measurements were consistent with the advancing contact angle; the sessile drop contact angle was 108 degrees . Water drop adhesion, as measured by the detachment angle on an inclined plane, showed much stronger water adhesion on Nafion than Teflon. Sessile water and methanol drops caused dry Nafion films to deflect. The flexure went through a maximum with time. Flexure increased with contact area of the drop, but was insensitive to the film thickness. Methanol drops spread more on Nafion and caused larger film flexure than water. The results suggest that the Nafion surface was initially hydrophobic but water and methanol drops caused hydrophilic sulfonic acid domains to be drawn to the Nafion surface. Local swelling of the film beneath the water drop caused the film to buckle. The maximum flexure is suggested to result from motion of a water swelling front through the Nafion film.  相似文献   

18.
钱晨  钱颖  崔司琪  王晶晶 《化学通报》2019,82(5):399-403
富勒烯有着独特的球形结构,这一结构赋予了其优异的光电及生物性能,在生物医药领域备受关注。环糊精具有良好的水溶性和生物相容性,锥筒状结构赋予了其特异性包合作用,在主客体化学中有着非常重要的地位。富勒烯/环糊精的复合物,结合了富勒烯和环糊精的优势,在DNA切割,光动力学疗法,药物载体等领域发挥了重要作用。本文从富勒烯与环糊精体系的构筑出发,综述了富勒烯/环糊精非共价包合物及共价偶联物在生物医药领域应用的研究进展,且对富勒烯/环糊精复合物的应用进行了展望,为构建新型富勒烯/环糊精复合物提供参考。  相似文献   

19.
We report on the formation of highly anisotropic nanotube composite materials, made by the attachment of gold nanoparticles to the surface of the single-walled carbon nanotubes, followed by preparation of an aligned composite film by compression in a Langmuir-Blodgett trough. The gold is attached in a one-step sonication procedure. The gold-modified nanotube material forms a stable suspension in toluene and has been characterized by atomic force and scanning force microscopy, energy-dispersive X-ray spectroscopy, and Raman spectroscopy. The aligned films have highly anisotropic electrical properties, with a factor of approximately 3000 difference in the conductivity between the aligned and perpendicular directions.  相似文献   

20.
We report a new and simple method for the formation of thin films at the interface between aqueous silica Ludox dispersions and lipid solutions in decane. The lipids used are stearic acid, stearyl amine, and stearyl alcohol alongside silica Ludox nanoparticle dispersions of varying pH. At basic pH thin films consisting of a mixture of stearic acid and silica nanoparticles precipitate at the interface. At acidic and neutral pH we were able to produce thin films consisting of stearyl amine and silica particles. The film growth was studied in situ with interfacial shear rheology. In addition to that, surface pressure isotherm and dynamic light scattering experiments were performed. The films all exhibit strong dynamic rheological moduli, rendering them an interesting material for applications such as capsule formation, surface coating, or as functional membranes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号