首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The possibility of incorporation of 4-(pyrrole-1-yl) benzoic acid, PyBA, during electrodeposition of poly(3,4-ethylenedioxythiophene), PEDOT, is demonstrated here. The resulting novel composite material has been fabricated as moderately thin (ca 200–300 nm thick) PEDOT/PyBA film on electrode surface. As evidenced from scanning tunneling microscopy (STM) and scanning electron microscopy (SEM), morphology of the composite film is dense and granular, and it is composed of larger granules in comparison to the PyBA-free PEDOT film. It is apparent from infrared reflectance absorption spectroscopy and spectroelectrochemical measurements that the PEDOT/PyBA composite film cannot be viewed as simple mixtures of PEDOT and PyBA components. Some specific (chemical) interactions between PEDOT and PyBA can be expected. The conducting polymer serves as a robust, positively charged conductive polmer matrix for anionic (carboxylate-group derivatized) partially polymerized PyBA structures. Upon incorporation of PyBA, the overall stability of PEDOT film (resistance to dissolution during prolonged voltammetric potential cycling) has been improved. The fact, that the composite PEDOT/PyBA film is capable of preconcentrating (under open circuit conditions) both cations (Cu2+) or anions implies the presence of both free (available for binding) carboxylate groups and positively charged PEDOT sites. The presence of PyBA in PEDOT seems to facilitate charge propagation in the composite film. “Contribution to the International Workshop on Electrochemistry of Electroactive Materials (WEEM-2006), Repino, Russia, 24–29 June 2006”.  相似文献   

2.
Conducting nanofiber composed of poly(vinyl alcohol) (PVA), graphene quantum dots (GQDs) and poly(3,4‐ethylenedioxythiophene) (PEDOT) was prepared for symmetrical supercapacitor through electrospinning and electropolymerization techniques. The formation of PVA nanofibers with the addition of GQDs was excellently prepared with the average diameter of 55.66 ± 27 nm. Field emission scanning electron microscopy images revealed that cauliflower‐like structure of PEDOT was successfully coated on PVA‐GQD electrospun nanofibers. PVA‐GQD/PEDOT nanocomposite exhibited the highest specific capacitance of 291.86 F/g compared with PVA/PEDOT (220.73 F/g) and PEDOT (161.48 F/g). PVA‐GQD/PEDOT also demonstrated a high specific energy and specific power of 16.95 and 984.48 W/kg, respectively, at 2.0 A/g current density. PVA‐GQD/PEDOT exhibited the lowest resistance of charge transfer (Rct) and equivalent series resistance compared with PEDOT and PVA/PEDOT, indicating that the fast ion diffusion between the electrode and electrolyte interface. PVA‐GQD/PEDOT nanocomposite also showed an excellent stability with retention of 98% after 1000 cycles. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 50–58  相似文献   

3.
Hybrid (composite) electroactive films consisting of such an organic conducting polymer as poly(3,4-ethylenedioxythiophene), PEDOT, and such a polynuclear inorganic compound as amorphous tungsten oxide, WO3/H x WO3 were fabricated on carbon electrodes through electrodeposition by voltammetric potential in acid solution containing EDOT monomer and sodium tungstate. Electrostatic interactions between the negatively charged tungstic units (existing within WO3) and the oxidized positively charged conductive polymer (oxidized PEDOT) sites create a robust hybrid structure which cannot be considered as a simple mixture of the organic and inorganic components. It is apparent from scanning electron microscopy that hybrid structures are granular but fairly dense. Because PEDOT and mixed-valence tungsten oxides are electronically conducting, the resulting hybrid films are capable of fast propagation. The reversible and fast redox reactions of tungsten oxide component lie in the potential range where PEDOT matrix is conductive. Furthermore, the hybrid films exhibit good mediating capabilities towards electron transfers between model redox couples such as cationic iron(III,II) and anionic hexacyanoferrate(III,II). Since the films accumulate effectively charge and show high current densities at electrochemical interfaces, they could be of importance to electrocatalysis and to construction of redox capacitors.  相似文献   

4.
Humic materials extracted from tree leaves of chestnut (Castanea sativa), eucalyptus (Eucalyptus globulus) and oak (Quercus robur) were analyzed by performing conductimetric titrations. Values between about 84 and 236 μS cm−1 for the molar conductivity and between 0.42 and 0.74 for the charge distribution parameter were obtained when the concentrations of the extract are increased from 40 to 100 mg 1−1. These variations were explained by using the counterion condensation theory, and the distance between the charged groups of the polyions, the volume of the counterion condensation and the Debye-Hückel potential were also calculated.  相似文献   

5.
Interpolymer polyelectrolyte complexes of chitosan (CS) with poly(acrylic acid) homopolymers and polystyrene‐block‐poly(acrylic acid) diblock copolymers were prepared and characterized. The influence of the positive/negative charge balance (charge ratio), pH, and ionic strength were thoroughly studied by dynamic light scattering. The existence of a strong polyelectrolyte effect was also highlighted in this study. Domains of stability, in which nanoparticle sizes are smaller than 100 and 200 nm for complexes of CS with the homopolymer and copolymer, respectively, were identified and confirmed by scanning electron microscopy and atomic force microscopy. The charged nature of the surface of the nanoparticles was evidenced by Zeta potential measurements. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

6.
Composites formed by poly(3,4‐ethylenedioxythiophene) and alumina (PEDOT/Al2O3) have been prepared by in situ anodic polymerization. For this purpose, the stability of 1:1 and 4:1 monomer:alumina aqueous solutions has been examined as a function of the pH (2.3, 4.0, 7.0, 8.8, or 10.8). Results indicate that the monomer behaves as a dispersant that remains stable at the studied basic pHs despite they are close to the isoelectric point of alumina. Although the thermal stability of the composites is considerably affected by the pH of the reaction medium, its influence on the surface morphology is very small. Independently, of the synthetic conditions, the electrochemical properties were better for PEDOT/Al2O3 than for pure PEDOT, reflecting that alumina particles promote the charge mobility. The highest specific capacitance (SC; 141 F/g), which was 55% higher than that obtained for pure PEDOT, was achieved for the composite prepared at pH = 8.8 using a 4:1 monomer:alumina ratio. These conditions favor the participation of OH groups as secondary doping agents without degrading the polymer matrix and enhance the specific surface of the films, facilitating the ionic mobility. On the other hand, application of a multi‐step polymerization strategy has shown that interfaces originated by consecutive steps enhance the SC. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2017 , 55, 1131–1141  相似文献   

7.
Conducting polymers are an interesting class of materials that can be tuned to have a range of properties through counterion doping. For most conducting polymers, the insertion of anions (the doping process) leads to the formation of carbocations (positive charge carriers) along the conjugated polymer backbone. In this research, we report on a scenario that arises where certain (commonly used) anions in water induce oxygenation of the conducting polymers heteroatom. This is in contrast to the widely reported doping process, and the recently reported hydrolysis of conducting polymers. We observe that the transition between these different conducting polymer-interactions/reactions is well described by the concept of structure-making and structure-breaking anions. Poly(3,4-propylenedioxy thiophene dimethyl) (PProDOT-Me2), polypyrrole (PPy), and poly(3,4-ethylenedioxy thiophene) (PEDOT) thin films are exposed to a range of anions in water. Both PProDOT-Me2 and PPy are susceptible to oxygenation, while in contrast PEDOT is doped, when exposed to structure-breaking anions. All the polymers show hydrolysis for structure-making anions. The knowledge of the interaction and/or reaction of conducting polymers with anions in water is not only critical to their application in devices for aqueous environments (i.e., sensing), but also for their processing and fabrication using water.  相似文献   

8.
We applied a simulation method [T. Sumi and H. Sekino, J. Chem. Phys. 122, 194910 (2005)] to an infinitely dilute polyelectrolyte immersed in one-component charged fluids in order to investigate salt effects on its collapse. In this model system, the degree of freedom of the counterion (or the coion) is considered using a density-functional theory for polymer-solvent admixtures, while the oppositely charged ions are treated as a structureless background having the opposite charge. Results obtained by these simulations show that not only the counterion but also the coion makes the polymer chain collapsed. The effects by the coion are stronger than that by the counterion. Temperature variation of the gyration radius of the polymer chain immersed in the counterion is opposite to that in the coion: while the radius of gyration decreases as the temperature decreases in the case of the counterion, it decreases as the temperature increases in the case of the coion. From these results we conclude that the former is interpreted as an enthalpy-driven collapse caused by the screening effects of the counterion, whereas the latter is interpreted as an entropy-driven one due to the translational entropy of the coion.  相似文献   

9.
Atomistic molecular dynamics (MD) simulations and contrast variation small angle neutron scattering (SANS) have been combined to investigate the Generation-5 polyelectrolyte polyamidoamine starburst dendrimer. This work reveals the dendrimer conformational dependence on counterion association at different levels of molecular charge. The accuracy of the simulations is verified through satisfactory comparison between modeled results, such as excess intra-dendrimer scattering length density distribution and hydration level, and their experimental counterparts. While the counterion distributions are not directly measureable with SANS, the spatial distribution of the counterions and their dendrimer association are extracted from the validated MD equilibrium trajectories. It is found that the conformation of the charged dendrimer is strongly dependent on the counterion association. Sensitivity of the distribution of counterions around charged amines to the counterion valency is qualitatively explained by adopting Langmuir adsorption theory. Moreover, via extending the concept of electrical double layer for compact charged colloids, we define an effective radius of a charged dendrimer including the spatial distribution of counterions in its vicinity. Within the same framework, the correlation between the strength of intra-dendrimer electrostatic repulsion and the counterion valency and dynamics is also addressed.  相似文献   

10.
Our previous study of the structure change of poly(amidoamine) starburst dendrimers (PAMAM) dendrimer of generation 5 (G5) have demonstrated that although the overall molecular size is practically unaffected by increasing DCl concentration, a configurational transformation, from a diffusive density profile to a more uniform density distribution, is clearly observed. In the current paper, the focus is placed on understanding the effect of counterion identity on the inter-molecular structure and the conformational properties by studying the effect due to DBr using small angle neutron scattering (SANS) and integral equation theory. While the overall molecular size is found to be essentially unaffected by the change in the pD of solutions, it is surprising that the intra-molecular configurational transformation is not observed when DBr is used. The overall effective charge of a dendrimer is nearly the same for α < 1, independent of the type of acids. However, when α > 1, the effect of counterion identity becomes significant, the effective charge carried by a charged G5 PAPAM protonated by DBr becomes smaller than that of solutions with DCl. As a consequence, a counterion identity dependence of counterion association is revealed: Under the same level of molecular protonation, the specific counterion association, which is defined as the ratio of bound chloride anions to positively charged amines per molecule, is larger for the G5 PAMAM dendrimer charged by DBr than the one by DCl.  相似文献   

11.
Poly(3,4-ethylenedioxythiophene (PEDOT) derivatives display a multitude of attractive properties such as high conductivity, biocompatibility, ease of functionalization, and high thermal stability. As a result, they show promise for applications in materials and biomedical engineering. In order to increase their applications in the practical domain, trivial fabrication techniques are required. Here, we present a simple layer-by-layer dip methodology to assemble water-soluble PEDOT derivatives that can then be disassembled via electrical stimulation. As a result, a dynamic PEDOT layered system is fabricated and could be applied as responsive materials for bioengineering. PEDOT-SO3 and PEDOT-NMe3 are synthesized via direct C-H arylation polymerization and chemical polymerization, respectively. The electrostatic interactions between oppositely charged SO3 and NMe3+ enabled the stacking of PEDOT derivatives. The layer-by-layer assemblies are confirmed by ultraviolet–visible spectroscopy and profilometer. Morphological analyses are performed using scanning electron microscopy and atomic force microscopy, which revealed that the polymer coatings are uniform without any cracks. In situ material assembly is studied using quartz crystal microbalance, and we also demonstrate that these PEDOT-derivative assemblies can be disintegrated by electrical stimulation. Cyclic voltammetry shows a proportional increase in stored charge density with the increase in bilayer thickness, confirming stable electroactivity of these assemblies. Using this approach, we can assemble conductive bio interface on both conductive and nonconductive surfaces, expanding the capability to fabricate bioelectronic electrodes.  相似文献   

12.
Poly(3,4‐ethylenedioxythiophene) doped with poly(styrenesulfonate) (PEDOT:PSS) has been reported as a successful functional material in a broad variety of applications. One of the most important advantages of PEDOT:PSS is its water‐solubility, which enables simple and environmental friendly manufacturing processes. Unfortunately, this also implies that pristine PEDOT:PSS films are unsuitable for applications in aqueous environments. To reach stability in polar solvents, (3‐glycidyloxypropyl)trimethoxysilane (GOPS) is typically used to cross‐link PEDOT:PSS. Although this strategy is widely used, its mechanism and effect on PEDOT:PSS performance have not been articulated yet. Here, we present a broad study that provides a better understanding of the effect of GOPS on the electrical and electronic properties of PEDOT:PSS. We show that the GOPS reacts with the sulfonic acid group of the excess PSS, causing a change in the PEDOT:PSS film morphology, while the oxidation level of PEDOT remains unaffected. This is at the origin of the observed conductivity changes. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2017 , 55, 814–820  相似文献   

13.
Herein, we report new reactivity of the conducting polymer, poly-(3,4-ethylenedioxy thiophene) (PEDOT), where PEDOT mediates a Ritter reaction between alcohols and acetonitrile. The yields were variable and in most cases competitive with results obtained using sulfuric acid. Attempts at a stoichiometric reaction between benzonitrile and diphenylmethanol are also reported herein. Finally, described here are preliminary mechanistic studies that suggest PEDOT is behaving as an alcohol-selective or specific Lewis acid.

Supplementary materials are available for this article. Go to the publisher's online edition of Synthetic Communications® for full experimental and spectral details.  相似文献   

14.
We present x-ray photoemission spectroscopy and highly resolved near-edge x-ray absorption fine structure spectroscopy measurements taken on pentacene thin films of different thicknesses deposited on a spin coated poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) substrate. Thin films of pentacene were prepared by using organic molecular beam deposition in situ using strictly controlled evaporation conditions. Our investigations show that pentacene thin films on PEDOT:PSS are characterized by upright standing molecules. Due to the strong dichroic behavior, the calculated values of the molecular orientation give a clear indication not only of the real molecular arrangement in the films but also of a high orientational order. This high degree of molecular orientation order is a characteristic already of the first layer. The films show the tendency to grow on the PEDOT:PSS substrate following an island-fashion mode, with a relatively narrow intermixing zone at the interface between the pentacene and the polymer blend. The peculiarity of the growth of pentacene on PEDOT:PSS is due to the fact that the substrate does not offer any template for the nucleated films and thus exerts a lateral order toward the crystal structure arrangement. Under these conditions, the upright orientation of the molecules in the films minimizes the energy required for the system stability.  相似文献   

15.
Polyelectrolytes such as poly(N-diallyldimethylammonium chloride) (PDADMAC) exhibit some local and semilocal order both in their conformation dynamics (dynamic correlations) and the average density of their counterion cloud (the radial density distribution). Both aspects of order are subject to cooperative fluctuations as well as mutual reinforcement. They can be observed in particular in dilute solutions, i.e. at concentrations of the charged groups less than 5 mmol/L. At such dilution, 1H NMR is the method of choice for the study of conformation dynamics. In addition to the recently published analysis of transverse relaxation and saturation transfer experiments, relaxations of double-quantum coherence, pseudo-solid echo and solid echo responses and exchange 2D spectra are reported here. For the radial distribution of counterions with spin-3/2 nuclei (7Li, 23Na, 35Cl, 81Br), the relaxation model proposed by Halle, Wennerstrom and Picullel is applied and the use of either combined longitudinal and transverse relaxation or DQC ( T 2 3 ) relaxation is shown. The results show that the counterion condensation, i.e. relative ordering of the counterion cloud, decreases in less densely charged polyions and vanishes for the charge separation about 2.5 nm.  相似文献   

16.
The primary goal with this work is to create electrically conductive cellulose fibres, this has been done to explore possible new applications for fibre based material. This research uses various methods to create polyelectrolyte multilayers (PEMs) on bleached softwood fibres and on SiO2 model surfaces, by sequentially treating these materials with poly(3,4-ethylenedioxythiophene):poly(styrene sulphonate) (PEDOT:PSS) and poly(allyl amine) (PAH). Paper sheets were then produced from the PEM-modified pulp and evaluated in terms of tensile strength, adsorbed amount of polymer, and electrical conductivity. To evaluate the influence of fibre charge on the measured paper properties, pulps of two different initial fibre charge densities were prepared via carboxymethylation. Because of the bluish colour of PEDOT:PSS, the build-up of PEM could be easily followed, since the fibres grew increasingly darker blue throughout the modification sequence. The conductivity of the fibre network increased by 2−3 orders of magnitude when the pulp of a higher fibre charge density was used. This suggests that it is more important to create a fibrous network with a high fibre-fibre joint strength and a large total joined area in the sheet rather than to maximize the adsorbed amount of PEDOT:PSS. A difference in conductivity could also be noted depending on the polyelectrolyte adsorbed in the outer layer, PAH lowered the conductivity compared to PEDOT:PSS. Evaluating the mechanical properties revealed that the use of PEDOT:PSS reduces the tensile strength of the paper. When five double layers had been adsorbed onto the carboxymethylated sample in which PEDOT:PSS formed the outer layer, calculations indicated a 25% decrease in tensile strength compared to that of reference material without PEMs. ESEM studies indicate that PEM treatment produces a significantly changed and somewhat smoother fibre surface.  相似文献   

17.
18.
The electrochemical polymerization of 3,4-ethylenedioxythiophene (EDOT) in the presence of the salt and acid forms of polymer sulfonates with different polymer-chain flexibility is studied. The dependence of the rate of synthesis of poly(3,4-ethylenedioxythiophene) (PEDOT) on the nature of polysulfonate counterion that determines the type and distribution density of the charge in the polyelectrolyte chain is demonstrated. For the Н+ form of a rigid-chain polysulfonate, it is found that the specific interactions between parts of its macromolecules lead to destabilization of EDOT?+ radical cations, hinder the growth of PEDOT chains, and favor the formation of structures with the high degree of charge localization.  相似文献   

19.
The electrical and structural properties of poly(3,4‐ethylenedioxythiophene):poly(4‐styrenesulfonate) (PEDOT:PSS) thin films deposited from aqueous dispersion using different concentrations of selected secondary dopants are studied in detail. An improvement of the electrical conductivity by three orders of magnitude is achieved for dimethyl sulfoxide, sorbitol, ethylene glycol, and N,N‐dimethylformamide, and the secondary dopant concentration dependence of the conductivity exhibits almost identical behavior for all investigated secondary dopants. Detailed analysis of the surface morphology and Raman spectra reveals no presence of the secondary dopant in fabricated films, and thus the dopants are truly causing the secondary doping effect. Although the ratio of benzenoid and quinoid vibrations in Raman spectra is unaffected by doping, the phase transition in PEDOT:PSS films owing to doping is confirmed. Further analysis of temperature‐dependent conductivity reveals 1D variable range hopping (VRH) charge transport for undoped PEDOT:PSS, whereas highly conductive doped PEDOT:PSS films exhibit 3D VRH charge transport. We demonstrate that the charge ‐ hopping dimensionality change should be a fundamental reason for the conductivity enhancement. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 1139–1146  相似文献   

20.
采用聚合和掺杂同时进行的反向胶束体系制备了粒径分散较小的聚3,4-乙烯二氧噻吩(PEDOT)纳米粒子, 利用紫外-可见光光谱(UV-Vis)、X射线衍射(XRD)和扫描电子显微镜(SEM)等分析方法对纳米粒子进行了表征. 实验结果发现, 氧化剂用量、超声处理、聚合温度及掺杂程度对PEDOT纳米粒子的形貌、电性能及热稳定性有不同程度的影响. 根据实验结果对反向胶束法制备PEDOT纳米粒子过程进行优化发现, 在PEDOT纳米粒子聚合过程中, 甲基苯磺酸有效掺杂浓度约为0.17 mol/L时, PEDOT链的取向最规则, 在6.7°, 12.7°, 25°出现衍射峰, 掺杂剂的有效掺杂使得纳米粒子中分子链的取向不同, 并可以获得较高的电导率(>100 S/cm)的PEDOT纳米粒子, 当粒子的尺寸小于20 nm后电导率降低; 热失重法(TG)分析结果表明, PEDOT纳米粒子的热稳定性比普通块材好, 掺杂剂浓度对纳米粒子的热稳定性有一定影响.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号