首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

A novel biosensor for catechol has been constructed by immobilizing polyphenol oxidase (PPO) into acetone-extracted propolis (AEP) composite modified with gold nanoparticles (GNPs) and attached to multiwalled carbon nanotube (MWCNTs) on a gold electrode surface. The propolis for AEP was obtained from honeybee colonies. Under the optimum conditions, this method could be successfully used for the amperometric determination of catechol within a concentration range of 1 × 10−6 to 5 × 10−4 M, with a detection limit of 8 × 10−7 M (S/N = 3). The effects of pH and operating potential are also explored to optimize the measurement conditions. The best response was obtained at pH 5, while an optimum ratio of signal-to-noise (S/N) was obtained at −20 mV (versus Ag/AgCl), which was selected as the applied potential for the amperometric measurements. All subsequent experiments were performed at pH 5. Cyclic voltammetry and electrochemical impedance spectroscopy was used to characterize the PPO/CNTs/GNPs/AEP/Au biosensor. The biosensor also exhibited good selectivity, stability, and reproducibility.

  相似文献   

2.
Yamamoto K  Shi G  Zhou T  Xu F  Xu J  Kato T  Jin JY  Jin L 《The Analyst》2003,128(3):249-254
In this paper, multi-walled carbon nanotubes (MWCNTs) were successfully immobilized on the surface of a glassy carbon electrode by mixing with horse-radish peroxidase (HRP). The electrochemical behavior of H2O2 was also studied with the MWCNTs-HRP modified electrode as a working electrode. The MWCNTs-HRP modified electrode showed excellent response of reduction current for the determination of H2O2 at the potential of -300 mV (vs. Ag/AgCl). We assembled the MWCNTs-HRP modified electrode in a thin-layer flow cell and the H2O2 solution was continuously introduced into the cell with a syringe pump. We optimized the sensitivity of the H2O2 sensor by adjusting the working potential and the pH of the buffer solution. The peak current increased linearly with the concentration of H2O2 in the range 3.0 x 10(-7) to approximately 2.0 x 10(-4) mol L(-1). The detection limit is 1.0 x 10(-7) mol L(-1) (S/N = 3). The interferences from ascorbic acid, uric acid and other electroactive substances can be greatly excluded since the sensor can be operated at -300 mV. Stability and reproducibility of the MWCNTs-HRP chemically modified electrode were also studied in this paper. Fabricated with glucose and lactate oxidase, the MWCNTs-HRP electrode was also applied to prepare the on-line glucose and lactate biosensors because of the high sensitivity for the determination of H2O2.  相似文献   

3.
The present work describes the development of a nanocomposite system and its application in construction of a new amperometric biosensor applied in the determination of total polyphenolic content from propolis extracts. The nanocomposite system was based on covalent immobilization of laccase on functionalized indium tin oxide nanoparticles and it was morphologically and structural characterized. The casting of the developed nanocomposite system on the surface of a screen-printed electrode was used for biosensor fabrication. The analytical performance characteristics of the settled biosensor were determined for rosmarinic acid, caffeic acid and catechol (as laccase specific substrate). The linearity was obtained in the range of 1.06×10?6 ? 1.50×10?5 mol L?1 for rosmarinic acid, 1.90×10?7 ? 2.80×10?6 mol L?1 for caffeic acid and 1.66×10?6 ? 7.00×10?6 mol L?1 for catechol. A good sensitivity of amperometric biosensor 141.15 nA µmol?1 L?1 and fair detection limit 7.08×10?8 mol L?1 were obtained for caffeic acid. The results obtained for polyphenolic content of propolis extracts were compared with the chromatographic data obtained by liquid-chromatography with diode array detection.   相似文献   

4.
A novel kind of sandwiched polymer membrane was prepared, which consists of two outer layers of electrospun poly(vinyl difluoride) (PVDF) fibrous films and one inner layer of poly(methyl methacrylate) (PMMA) film. Its characteristics were investigated by scanning electron microscopy and X-ray diffraction. The membrane can easily absorb non-aqueous electrolyte to form gelled polymer electrolytes (GPEs). The resulting gelled polymer electrolytes had a high ionic conductivity up to 1.93 × 10−3 S cm−1 at room temperature, and exhibited a high electrochemical stability potential of 4.5 V (vs. Li/Li+). It is of great potential application in polymer lithium-ion batteries.  相似文献   

5.
A sensitive method for the detection of the lectin protein concanavalin A (Con A) was developed using amino-dextran (AD)-protected gold (AD-Au) and silver nanoparticles (AD-Ag) as sensitive optical probes. The AD-Au and AD-Ag nanoparticles were synthesized by directly applying amino-dextran as a reductive and protective reagent. The size of the nanoparticles could be altered by changing the molar ratio of AD to the metal salt. The amino-dextran bound to Con A by forming a 4:1 Au-Con A complex at neutral pH, and the nanoparticles were induced to aggregate by Con A. The absorption intensity of the nanoparticles decreased linearly with as the Con A concentration was increased from 3.85×10–8 to 6.15×10–7 M. The Au-Con A complex was dissociated by the disaccharide isomaltose, which has a higher affinities for Con A than Au; this competitive strategy could also be used to detect similar types of saccharides.  相似文献   

6.
壳聚糖-二茂铁复合物(CHIT-Fc)由二茂铁羧酸的羧基和脱乙酰壳多糖的羟基缩合合成,并通过红外光谱检测.合成得到的壳聚糖-二茂铁复合物通过物理吸附作为固定胆固醇氧化酶(CHOx)的基体.同时,使用Nafion稀释液可以消除诸如抗坏血酸和尿酸的影响.最佳测试条件下,采用示差脉冲(DPV)研究胆固醇生物传感器的响应,在4.0×10-6mol/L~1.0×10-4 mol/L范围内,氧化峰电流与胆固醇浓度呈现良好的线性关系,线性方程为Ipa=0.0223c-0.0875(Ipa:μA,c:μmol/L,R=0.9982),检测限为5.0×10-7mol/L(S/N=3).  相似文献   

7.
Radical polymerizations of methyl methacrylate (MMA), styrene (St), and vinyl acetate (VAc) were carried out in the presence of a novel phenyl acrylate derivative bearing a hindered phenol moiety (HPA). It has been clarified that HPA acts as a retarder and inhibitor for the polymerizations of MMA and VAc, respectively, and that in the polymerization of St it behaves as a monomer to give a copolymer. These additive effects were interpreted in terms of intramolecular transfer of the phenolic hydrogen in competition with propagation of the HPA radical to monomers. © 1994 John Wiley & Sons, Inc.  相似文献   

8.
A mathematical model is developed for the simulation of the amperometric response of a biosensor for catechol using polyphenoloxidase. The model is based on transient diffusion equations containing nonlinear terms of Michaelis-Menten for two space regions: the diffusion layer and the biomembrane containing the immobilized enzyme. The set of partial derivatives of nonlinear equations and the corresponding boundary and initial conditions was solved using the implicit finite difference technique. This numerical solution was then exploited to study the effects of permeability and thickness of the biomembrane on the maximum response of the reduction current and the amplification factor corresponding to the maximum of catalytic activity of the enzyme. This amplification factor increases with the thickness of the biomembrane while permeability is weak. In the case of the low initial concentrations (10?6 to 5.10?4 mM), its value is maximal and remains independent of substrate concentration. Also, the amplification factor is more significant when the diffusion resistance is more important, i.e. for high thicknesses or weak permeabilities of the biomembranes.  相似文献   

9.
Several impurities which were suspected to be present in commercial reagent-grade phenol were separated using high performance liquid chromatography following sample concentration by steam distillation. A reverse-phase, microparticulate column and 5 solvent systems containing 5% to 25% methanol in 0.05 M phosphoric acid were used. A variable wavelength ultraviolet detector and an electrochemical detector were connected in series, in that order, to the column. Capacity factors (?) for pyrogallol, hydroquinone, resorcinol, catechol, orcinol and phenol were determined in the 5 solvent systems and compared to ?-values of impurities present in the residue remaining from the steam distillation of phenol. Co-chromatography of standards suspected as contaminants and possessing ?-values similar to those of impurities were carried out in 3 solvent systems to confirm identical retention characteristics. Detector response ratios of contaminants and suspected standards, using various wavelengths and voltage potential settings, were utilized as major identification parameters. Two of the several contaminants separated were identified as hydroquinone and catechol.  相似文献   

10.
This is the first direct analysis in real-time mass spectrometry (DART-MS) study of propolis and a first study on the analysis of bee products using high-resolution DART-MS (DART-HRMS). Identification of flavonoids and other phenolic compounds in propolis using direct analysis in real-time coupling with Orbitrap mass spectrometry (DART-Orbitrap MS) was performed in the negative ion mode for minimizing the matrix effects, while the positive ion mode was used for the confirmation of selected compounds. Possible elemental formulae were suggested for marker components. The duration of one sample analysis by DART-MS analysis lasted ca. 30 s, and all benefits of high-resolution mass spectrometry were used upon data processing using the coupling of DART with the Orbitrap mass spectrometer. The possibility for scanning analysis of dried propolis extract spots on a planar porous surface was investigated in the heated gas flow of the DART ion source with adjustable angle. As an independent method, the approach of scanning analysis is of high interest and of future potential for confirmation of the results obtained from liquid sample analysis. Scanning analysis is highly promising for further development in the bioanalytical field due to the convenience of the storage and transportation of dried sample spots.  相似文献   

11.
The convergent synthesis of a series of porphyrin-functionalized pyrimidine dendrimers has been accomplished by a procedure involving the nucleophilic aromatic substitution (NAS) as a key reaction step. The resulting dendritic porphyrin catalysts show high activity in the light-induced generation of singlet oxygen ((1)O2) from ground-state oxygen. These materials are synthetically useful photosensitizers for the oxidation of various olefinic compounds to the corresponding allylic hydroperoxides. Catalytic activities and regio- and stereoselectivities of the dendritic photosensitizers are comparable to those observed for mononuclear porphyrin catalysts. Recycling of the dendrimer-enlarged homogeneous photocatalysts was possible by solvent-resistant nanofiltration (SRNF) by using an oxidatively stable membrane consisting of a polysiloxane polymer and ultrastable Y zeolite as inorganic filler. Moreover, this membrane technology provides a safe way to isolate the hydroperoxide products under very mild conditions. The membrane showed high retention for the macromolecular catalysts, even in chlorinated solvents, but some oxidative degradation of the porphyrin units of the dendrimer was observed over multiple catalytic runs.  相似文献   

12.
Journal of Radioanalytical and Nuclear Chemistry - Quantitative calculation based on the joint action of anion exclusion and sorption has not been reported. This article studies the diffusion...  相似文献   

13.
In this work the catalytic role of unsupported gold nanoparticles on the luminol–hydrazine reaction is investigated. Gold nanoparticles catalyze the reaction of hydrazine and dissolved oxygen to generate hydrogen peroxide and also catalyze the oxidation of luminol by the produced hydrogen peroxide. The result is an intense chemiluminescence (CL) due to the excited 3-aminophthalate anion. In the absence of gold nanoparticles no detectable CL was observed by the reaction of luminol and hydrazine unless an external oxidant is present in the system. The size effect of gold nanoparticles on the CL intensity was investigated. The most intensive CL signals were obtained with 15-nm gold nanoparticles. UV–vis spectra and transmission electron microscopy studies were used to investigate the CL mechanism. The luminol and hydroxide ion concentration, gold nanoparticles size and flow rate were optimized. The proposed method was successfully applied to the determination of hydrazine in boiler feed water samples. Between 0.1 and 30 μM of hydrazine could be determined with a detection limit of 30 nM.  相似文献   

14.
15.
The various protonated forms of phenol (1), catechol (2), resorcinol (3), and hydroquinone (4) were explored by ab initio quantum chemical calculations at the MP2/6-31G(d) and B3LYP/6-31G(d) levels. Proton affinities (PA) of 1-4 were calculated by the combined G2(MP2,SVP) method, and their gas-phase basicities were estimated after calculation of the change in entropy on protonation. These theoretical data were compared with the corresponding experimental values determined in a high-pressure mass spectrometer. This comparison confirmed that phenols are essentially carbon bases and that protonation generally occurs in a position para to the hydroxyl group. Resorcinol is the most effective base (PA = 856 kJ mol-1) due to the participation of both oxygen atoms in the stabilization of the protonated form. Since protonation is accompanied by a freezing of the two internal rotations, a significant decrease in entropy is observed. The basicity of catechol (PA = 823 kJ mol-1) is due to the existence of an intramolecular hydrogen bond, which is strengthened upon protonation. The lower basicity of hydroquinone (PA = 808 kJ mol-1) is a consequence of the fact that protonation necessarily occurs in a position ortho to the hydroxyl group. When the previously published data are reconsidered and a corrected protonation entropy is used, a proton affinity value of 820 kJ mol-1 is obtained for phenol.  相似文献   

16.
17.

Permselective modifier films are very important in preparing highly sensitive electrochemical sensors. In this work, for the first time, the behavior of gold and glassy carbon electrodes coated with biocompatible zein film as a permselective membrane for the electrochemical detection of various compounds has been investigated. For this purpose, several electroactive cationic (methylene blue, brilliant green, and thionine) and anionic (potassium ferricyanide, alizarin red S, and riboflavin-5’-phosphate) compounds have been used as model. Atomic force microscopy (AFM) and scanning electron microscopy (SEM) showed that zein membranes prepared from casting solution containing 1% zein in ethanol/water have porous structures with high nanometric roughness. The capacitance values of electrical double layers of electrodes modified with zein film were very high for hydrophilic ions in comparison with hydrophobic ions. Point of zero charge pH (pHpzc) of zein membrane was 4.8. The results of cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) as well as pHpzc study indicated that zein permselective membrane acts as ion exchanger film for selected cationic compounds with fast electrochemical kinetics responses in aqueous solution (pH=7). This behavior was confirmed by circulating solutions containing model compounds from homemade continuous cell equipped with polyamide membranes modified with zein film.

Graphical Abstract
  相似文献   

18.
催化苯酚羟基化制邻、对苯二酚的研究进展   总被引:2,自引:0,他引:2  
概述了苯酚双氧水羟基化催化剂的研究进展,指出水滑石类催化剂催化苯酚羟基化反应具有良好的应用前景,并对苯酚双氧水羟基化反应的影响因素和催化反应机理进行了讨论。  相似文献   

19.
Although molecular bromine (Br2) is a useful brominating reagent, it is not easy to handle. Herein, we describe the preparation of a novel air-stable bromine complex prepared from 1,3-dimethyl-2-imidazolidinone (DMI) and Br2, which was identified to be (DMI)2HBr3 by spectral and X-ray techniques. This complex was then used to brominate olefins, carbonyl compounds, and aromatics, as well as in the Hofmann rearrangement. Yields of reaction products using this complex were almost the same or superior to those using other bromine alternatives.  相似文献   

20.
E. Chevalier  A. Artaud  D. Chulia 《Talanta》2009,77(4):1545-227
This paper describes the use of a novel flow cell, the T-cell, adapted to the flow-through cell apparatus, for the study of ibuprofen release from implantable loaded pellets and its performance in comparison to the compendial tablet cell. In fact, the drug targeting with a local delivery system becomes increasingly used to achieve therapeutic doses directly on the implantation site while maintaining a low systemic drug level. Due to the long and expensive in vivo studies necessary to evaluate the efficacy of such delivery systems, in vitro dissolution techniques are performed despite there being no standard method in the biomaterial field. In this work, dissolution profiles obtained with the T-cell configuration clearly indicate a prolonged release of ibuprofen. Dissolution data fitted to Higuchi, Hixson-Crowell, Ritger-Peppas and Kopcha equations indicate the coexistence of diffusion and erosion mechanisms governing ibuprofen release. T-cell adapted to the standard flow-through dissolution apparatus is shown to better simulate in vivo conditions than the tablet cell. This is relevant for in vivo/in vitro correlations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号