首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

The reverse depth profile analysis is a recently developed method for the study of a deposit composition profile in the near-substrate zone. The sample preparation technique enables one to separate the deposit and a thin cover layer from its substrate, and the initial roughness of the sample is much smaller than in the conventional sputtering direction. This technique is particularly suitable to study the zones being formed in the early phase of the electrodeposition of alloys. It has been demonstrated with the reverse depth profile analysis that in many cases when one component of an alloy is preferentially deposited, an initial zone is formed that is rich in the preferentially deposited component. This phenomenon is demonstrated for Ni–Cd, Ni–Sn, Fe–Co–Ni, Co–Ni, and Co–Ni–Cu alloys. The composition change is confined to the initial 150-nm-thick deposit, and it is the result of the interplay of the deposition preference and the depletion of the electrolyte near the cathode with respect to the ion reduced preferentially. The reverse depth profile analysis made it possible to compare the measured and the calculated composition depth profile of electrodeposited multilayers. It has been shown that the decay in the composition oscillation intensity in Co/Cu multilayers with the increase of the sputtering depth can be derived from the roughness measured as a function of the deposit thickness.

  相似文献   

2.
Three methods enabling the determination of the first two atomic layers composition of binary metallic alloys via Auger electron spectroscopy are described and discussed. In the first one, the low and high energy Auger peak heights (APHs) for the both components of an alloy are measured which gives information on the composition of the superficial layer and the deeper one, respectively. In the second method, the ratios of different energy APHs for one component of an alloy are measured and fitted to those calculated for particular compositions of the first and second atomic layer and the bulk. In the third method, the ratio of the low energy APHs for both components of the alloy with the known bulk composition is measured with a retarding field analyzer for the incidence angle of the primary electron beam equal to 0 ° and 60 °. This ratio is fitted to the ratios calculated for both incidence angles and for particular compositions of the first and second atomic layers. Results for AuxCu1-x alloys, with x ranging from 0.1 to 0.9, obtained from both the above methods and the low energy ion scattering are collected in the paper. A comparison is also made with the theoretical predictions, based on the Monte Carlo simulations for the (001) and (111) terminated crystals of AuCu3 and AuCu. A reasonable qualitative agreement between the experiment and theory is shown.  相似文献   

3.
电沉积非晶态镍磷合金的研究   总被引:2,自引:0,他引:2  
本文用电化学方法, X射线衍射及电子能谱方法研究了阴极恒电位沉积非晶态镍磷合金镀层,实验结果表明,影响镍磷合金非晶结构的主要因素是镀层中的磷含量,当磷含量大于9%时,镀层具有良好的非晶结构,镀层中镍和磷主要以元素态形式存在,磷的析出具有诱导共析特点。  相似文献   

4.

Nickel-ruthenium alloys with various compositions have been deposited by electrodeposition for the first time. Cyclic voltammetry and linear stripping voltammetry measurements show that codeposition of nickel with ruthenium is possible below the potential value of nickel reduction. High-quality alloys containing nickel and ruthenium can be plated at cathodic potentials ranging from − 0.5 to − 1.0 V vs SCE. Deposited coatings were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and atomic force microscopy (AFM). The diffractograms obtained show that an increase of nickel concentration in alloy will lead to a change in the phase composition and formation of NiRu (100) and (101) phases which is observed to be 78 mas.% Ni. SEM studies confirm the surface homogeneity and presence of small, regular grains. AFM observation allows the estimation of the real surface area of obtained alloys which increase with more negative electrodeposition potentials. Ni-Ru alloys were found to be highly electroactive in the water splitting process, which can be connected with the presence of the NiRu phase and a well-developed electroactive area.

Electrochemical deposition of Ni-Ru alloys with various composition and their catalytic activity in water splitting process

  相似文献   

5.
Nanometer depth resolution is investigated using an innovative pulsed-radiofrequency glow discharge time-of-flight mass spectrometer (pulsed-rf-GD-TOFMS). A series of ultra-thin (in nanometers approximately) Al/Nb bilayers, deposited on Si wafers by dc-magnetron sputtering, is analyzed. An Al layer is first deposited on the Si substrate with controlled and different values of the layer thickness, t Al. Samples with t Al = 50, 20, 5, 2, and 1 nm have been prepared. Then, a Nb layer is deposited on top of the Al one, with a thickness t Nb = 50 nm that is kept constant along the whole series. Qualitative depth profiles of those layered sandwich-type samples are determined using our pulsed-rf-GD-TOFMS set-up, which demonstrated to be able to detect and measure ultra-thin layers (even of 1 nm). Moreover, Gaussian fitting of the internal Al layer depth profile is used here to obtain a calibration curve, allowing thickness estimation of such nanometer layers. In addition, the useful yield (estimation of the number of detected ions per sputtered atom) of the employed pulsed-rf-GD-TOFMS system is evaluated for Al at the selected operating conditions, which are optimized for the in-depth profile analysis with high depth resolution.  相似文献   

6.
7.
8.
Summary SIMS depth profiling, using an oxygen primary beam at close to normal incidence, was applied to study lithium diffusion in thin films of hydrogenated amorphous silicon (a-Si:H) as well as in layered structures of doped and undoped silicon-based alloys. A strongly increasing decay length of the lithium profiles was observed for increasing primary beam energies and is attributed to the Li accumulation at the SiOx/Si interface. The stability of the lithium incorporation in a-Si:H is found to depend on the presence of charged acceptors or defects and of doping gradient related electrical fields.  相似文献   

9.
10.
Direct solid analysis of ultrathin layers is investigated using pulsed radiofrequency (rf) glow discharge (GD) time-of-flight mass spectrometry (TOFMS). In particular, previous studies have always integrated the detected ion signals in the afterglow region of the rf-GD pulse, which is known to be the most sensitive one. Nevertheless, the analytical capabilities of other pulse time regions have not been evaluated in detail. Therefore, in this work, we investigate the analyte prepeak region, which is the pulse region where the analyte ions peak after the initial sputtering process of each GD pulse, aiming at obtaining improved depth profile analysis with high depth resolution and with minimum polyatomic spectral interferences. To perform these studies, challenging ultrathin Si-Co bilayers deposited on a Si substrate were investigated. The thickness of the external Si layer was 30 nm for all the samples, whilst the internal Co layer thicknesses were 30, 10, 5, 2 and 1 nm, respectively. It should be remarked that the top layer and the substrate have the same matrix composition (Si > 99.99%). Therefore, the selected samples are suitable to evaluate the response of the Si ion signal in the presence of an ultrathin Co layer as well as the possible oxygen contaminations or its reactions. Additionally, these samples have been evaluated using time-of-flight secondary ion mass spectrometry, and the results compare well to those obtained by our pulsed rf-GD time-of-flight mass spectrometry results.  相似文献   

11.
12.
In this study a new approach to the online monitoring of the Al depth profile of hot-dip galvanised sheet steel is presented, based on laser-induced breakdown spectroscopy (LIBS). The coating composition is measured by irradiating the traversing sheet steel with a series of single laser bursts, each at a different sheet steel position. An ablation depth in the same range as the coating thickness (about 10 μm) is achieved by applying a Nd:YAG laser at 1064 nm in collinear double-pulse and triple-pulse mode. The ablation depth is controlled by adjusting the burst energy with an external electro-optical attenuator. A fingerprint of the depth profile is gained by measuring the LIBS signals from zinc, aluminium and iron as a function of the burst energy, and by post-processing the data obtained. Up to three depths can be sampled simultaneously with a single laser burst by measuring the LIBS signals after each pulse within the laser burst. A concept for continuously monitoring the Al depth profile during the galvanising process is presented and applied to different hot-dip galvanised coatings. The method was tested on rotating sheet steel disks moving at a speed of up to 1 m/s. The potential and limitations of the new method are discussed.  相似文献   

13.
The effect of composition and structure of electrodeposited nickel-phosphorus coatings on their catalytic properties in the hydrogen evolution reaction is studied. It is found that an increase in the content of phosphorus in the alloy from 0.1 to 12.6 wt % leads to an increase in the hydrogen evolution rate. The coatings, which were deposited under the galvanostatic conditions, exhibit higher activity than those plated under the potentiodynamic conditions. It is shown that the nature of acceleration of hydrogen evolution rate on the alloys depends on the alloy composition: only Ni-P alloys containing up to 6.5 wt % phosphorus possess true catalytic activity, whereas the coatings enriched in phosphorus promote the hydrogen evolution due to significant development of their surface area.  相似文献   

14.
The adherence mechanism of arc sprayed Ni layers on structure steel St37 is investigated. AES depth profiles are obtained on single Ni particles still adhering to the substrate after the Ni layer has been separated from it. A comparison of interface shapes and results of adherence measurements reveals Fe-Ni layered structures for the best adhering layers, whereas less adhering layers are characterized by narrower interfaces caused by diffusion. Areas with no adherence are covered with oxidic layers.  相似文献   

15.
We introduce slope analysis as a straightforward complement to scaling analysis for characterizing the morphology of electrodeposited thin films. The surface slope θ, defined as the angle between the local surface normal and the film normal, is calculated as a function of position for electrodeposited Cu films of increasing thickness t. We show that the mean value of θ increases with t and demonstrate the close relationship between this observation and the increase in local roughness found in previous studies from scaling analysis.  相似文献   

16.
In this work, we address the capability of glow discharge optical emission spectroscopy (GDOES) for fast and accurate depth profiling of multilayer nitride coatings down to the nanometer range. This is shown by resolving the particular case of CrN/AlN structures with individual thickness ranging from hundreds to few nanometers. In order to discriminate and identify artefacts in the GDOES depth profile due to the sputtering process, the layered structures were verified by Rutherford backscattering spectrometry (RBS) and scanning electron microscopy (SEM). The interfaces in the GDOES profiles for CrN/AlN structures are sharper than the ones measured for similar metal multilayers due to the lower sputtering rate of the nitrides. However, as a consequence of the crater shape, there is a linear degradation of the depth resolution with depth (approximately 40 nm/μm), saturating at a value of approximately half the thickness of the thinner layer. This limit is imposed by the simultaneous sputtering of consecutive layers. The ultimate GDOES depth resolution at the near surface region was estimated to be of 4–6 nm.  相似文献   

17.
18.
A major challenge regarding the characterization of multilayer films is to perform high-resolution molecular depth profiling of, in particular, organic materials. This experimental work compares the performance of C60 + and Ar1700 + for the depth profiling of model multilayer organic films. In particular, the conditions under which the original interface widths (depth resolution) were preserved were investigated as a function of the sputtering energy. The multilayer samples consisted of three thin δ-layers (~8 nm) of the amino acid tyrosine embedded between four thicker layers (~93 nm) of the amino acid phenylalanine, all evaporated on to a silicon substrate under high vacuum. When C60 + was used for sputtering, the interface quality degraded with depth through an increase of the apparent width and a decay of the signal intensity. Due to the continuous sputtering yield decline with increasing the C60 + dose, the second and third δ-layers were shifted with respect to the first one; this deterioration was more pronounced at 10 keV, when the third δ-layer, and a fortiori the silicon substrate, could not be reached even after prolonged sputtering. When large argon clusters, Ar1700 +, were used for sputtering, a stable molecular signal and constant sputtering yield were achieved throughout the erosion process. The depth resolution parameters calculated for all δ-layers were very similar irrespective of the impact energy. The experimental interface widths of approximately 10 nm were barely larger than the theoretical thickness of 8 nm for the evaporated δ-layers.
Figure
Depth profiling of an evaporated multilayer amino-acid film using fullerene and large argon clusters. The film consists in three tyrosine layers of 8 nm each incorporated between four phenylalanine layers of 93 nm each all evaporated on to a silicon substrate.  相似文献   

19.
20.
The correlation between the composition, morphology, and properties of Fe-W alloy coatings containing up to 29 at % tungsten was investigated by means of scanning electron microscopy, X-ray diffraction analysis, and the wear resistance and nanohardness measurements. The coatings were deposited from the citrate-ammonia bath at a direct current, the current densities were ranged from 10 to 100 mA/cm2. It is shown that, in contrast to metallurgical iron, the Fe-W coatings are nanocrystalline (amorphous, the grain size is 3.0–4.0 nm). This structure of alloys allows us to produce the coatings with a nanohardness of ~13 GPa, which is comparable to the electrolytic chromium coatings. The study of wear resistance of thus obtained coatings reveals their oxidation in the course of dry friction; as a result, the oxygen content in the debris increases by 2–3 times, and the wear volume due to the tribooxidation exceeds that for similar hard Co-W and electrolytic chromium coatings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号