首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
High-level ab initio potential-energy curves and transition dipole moments for the OH X 2Pi, 2 2Pi, 1 2Sigma-, D 2Sigma-, 3 2Sigma-, A 2Sigma+, B 2Sigma+, 1 2Delta, 1 4Sigma-, and 1 4Pi states are computed. The results are used to estimate the (2+1) resonance enhanced multiphoton ionization spectrum for the (D,3)2Sigma-(upsilon')<--2hnuX 2Piupsilon") transitions, which are compared with experiments by Greenslade et al. [see M. E. Greenslade, M. I. Lester, D. C. Radenovic, J. A. van Roij, and D. H. Parker, J. Chem. Phys. 123, 074309 (2005), preceeding paper]. We use the discrete variable representation-absorbing boundary condition method to incorporate the effect of the dissociative intermediate 1 2Sigma- state. We obtain qualitative agreement with experiment for the line strengths. Radiative and predissociative decay rates of the Rydberg (D,3)2Sigma- states of OH and OD were computed, including spin-orbit coupling effects and the effect of spin-electronic and gyroscopic coupling. We show that the lifetime of the Rydberg 2Sigma- states for rotationally cold molecules is limited mainly by predissociation caused by spin-orbit coupling.  相似文献   

2.
The singlet ground ((approximate)X(1)Sigma1+) and excited (1Sigma-,1Delta) states of HCP and HPC have been systematically investigated using ab initio molecular electronic structure theory. For the ground state, geometries of the two linear stationary points have been optimized and physical properties have been predicted utilizing restricted self-consistent field theory, coupled cluster theory with single and double excitations (CCSD), CCSD with perturbative triple corrections [CCSD(T)], and CCSD with partial iterative triple excitations (CCSDT-3 and CC3). Physical properties computed for the global minimum ((approximate)X(1)Sigma+HCP) include harmonic vibrational frequencies with the cc-pV5Z CCSD(T) method of omega1=3344 cm(-1), omega2=689 cm(-1), and omega3=1298 cm(-1). Linear HPC, a stationary point of Hessian index 2, is predicted to lie 75.2 kcal mol(-1) above the global minimum HCP. The dissociation energy D0[HCP((approximate)X(1)Sigma+)-->H(2S)+CP(X2Sigma+)] of HCP is predicted to be 119.0 kcal mol(-1), which is very close to the experimental lower limit of 119.1 kcal mol(-1). Eight singlet excited states were examined and their physical properties were determined employing three equation-of-motion coupled cluster methods (EOM-CCSD, EOM-CCSDT-3, and EOM-CC3). Four stationary points were located on the lowest-lying excited state potential energy surface, 1Sigma- -->1A", with excitation energies Te of 101.4 kcal mol(-1) (1A"HCP), 104.6 kcal mol(-1)(1Sigma-HCP), 122.3 kcal mol(-1)(1A" HPC), and 171.6 kcal mol(-1)(1Sigma-HPC) at the cc-pVQZ EOM-CCSDT-3 level of theory. The physical properties of the 1A" state with a predicted bond angle of 129.5 degrees compare well with the experimentally reported first singlet state ((approximate)A1A"). The excitation energy predicted for this excitation is T0=99.4 kcal mol(-1) (34 800 cm(-1),4.31 eV), in essentially perfect agreement with the experimental value of T0=99.3 kcal mol(-1)(34 746 cm(-1),4.308 eV). For the second lowest-lying excited singlet surface, 1Delta-->1A', four stationary points were found with Te values of 111.2 kcal mol(-1) (2(1)A' HCP), 112.4 kcal mol(-1) (1Delta HPC), 125.6 kcal mol(-1)(2(1)A' HCP), and 177.8 kcal mol(-1)(1Delta HPC). The predicted CP bond length and frequencies of the 2(1)A' state with a bond angle of 89.8 degrees (1.707 A, 666 and 979 cm(-1)) compare reasonably well with those for the experimentally reported (approximate)C(1)A' state (1.69 A, 615 and 969 cm(-1)). However, the excitation energy and bond angle do not agree well: theoretical values of 108.7 kcal mol(-1) and 89.8 degrees versus experimental values of 115.1 kcal mol(-1) and 113 degrees. of 115.1 kcal mol(-1) and 113 degrees.  相似文献   

3.
The low-lying XSigma+, a3Delta, A1Delta, b3Sigma+, B1Pi, c3Pi, C1Phi, D1Sigma+, E1Pi, d3Phi, and e3Pi electronic states of RhB have been investigated at the ab initio level, using the multistate multiconfigurational second-order perturbation (MS-CASPT2) theory, with extended atomic basis sets and inclusion of scalar relativistic effects. Among the eleven electronic states included in this work, only three (the X1Sigma+, D1Sigma+, and E1Pi states) have been investigated experimentally. Potential energy curves, spectroscopic constants, dipole moments, binding energies, and chemical bonding aspects are presented for all electronic states.  相似文献   

4.
The electronic and geometric structures of gallium dinitride cation, GaN2+ and gallium tetranitride cation, GaN4+ were systematically studied by employing density functional theory (DFT-B3LYP) and perturbation theory (MP2, MP4) in conjunction with large basis sets, (aug-)cc-pVxZ, x = T, Q. A total of 7 structures for GaN2+ and 24 for GaN4+ were identified, corresponding to minima, transition states, and saddle points. We report geometries and dissociation energies for all the above structures as well as potential energy profiles, potential energy surfaces, and bonding mechanisms for some low-lying electronic states. The calculated dissociation energy (De) of the ground state of GaN2+, X1Sigma+, is 5.6 kcal/mol with respect to Ga+(1S) + N2(X1Sigmag+) and that of the excited state, ?3Pi, is 24.8 kcal/mol with respect to Ga+(3P) + N2(X1Sigmag+). The ground state and the first excited minimum of GaN4+ are of 1A1(C2v) and 3B1(C2v) symmetry with corresponding De of 11.0 and 43.7 kcal/mol with respect to Ga+(1S) + 2N2(X1Sigmag+) for X1A1 and Ga+(3P) + 2N2(X1Sigmag+) for 3B1.  相似文献   

5.
We have investigated the electronic structure of 14 states of the experimentally unknown diatomic molecule chromium carbide, CrC, using standard multireference configuration interaction methods and high quality basis sets. We report potential curves, binding energies, and a number of spectroscopic parameters. The ground state of CrC, X 3Sigma-, displays triple-bond character with a binding energy of D(e)=89 kcal/mol and an internuclear separation of r(e)=1.63 A. The first excited state (1 5Sigma-) lies 9.2 kcal/mol higher. All the states studied are fairly ionic, featuring an electron transfer of 0.3-0.5e- from the metal atom to the carbon atom.  相似文献   

6.
Complete active space self-consistent-field (CASSCF) and multiconfiguration second-order perturbation theory (CASPT2) calculations with atomic natural orbital basis sets were performed to investigate the S-loss direct dissociation of the 1 2Pi(X 2Pi), 2 2Pi(A 2Pi), 1 2Sigma+(B 2Sigma+), 1 4Sigma-, 1 2Sigma-, and 1 2Delta states of the OCS+ ion and the predissociations of the 1 2Pi, 2 2Pi, and 1 2Sigma+ states. Our calculations indicate that the S-loss dissociation products of the OCS(+) ion in the six states are the ground-state CO molecule plus the S+ ion in different electronic states. The CASPT2//CASSCF potential energy curves were calculated for the S-loss dissociation from the six states. The calculations indicate that the dissociation of the 1 4Sigma- state leads to the CO + S+ (4Su) products representing the first dissociation limit; the dissociations of the 1 2Pi, 1 2Sigma-, and 1 2Delta states lead to the CO + S+(2Du) products representing the second dissociation limit; and the dissociations of the 2 2Pi and 1 2Sigma+ states lead to the CO + S+(2Pu) products representing the third dissociation limit. Seams of the 1 2Pi-1 4Sigma-, 2 2Pi-1 4Sigma-, 2 2Pi-1 2Sigma-, 2 2Pi-1 2Delta, and 1 2Sigma(+)-1 4Sigma- potential energy surface intersections were calculated at the CASPT2 level, and the minima along the seams were located. The calculations indicate that within the experimental energy range (15.07-16.0 eV) the 2 2Pi(A 2Pi) state can be predissociated by 1 4Sigma- forming the S+(4Su) ion and can undergo internal conversion to 1 2Pi followed by the direct dissociation of 1 2Pi forming S+(2Du) and that within the experimental energy range (16.04-16.54 eV) the 1 2Sigma+(B 2Sigma+) state can be predissociated by 1 4Sigma- forming the S+(4Su) ion and can undergo internal conversion to 2 2Pi followed by the predissociation of 2 2Pi by 1 2Sigma- and 1 2Delta forming the S+(2Du) ion. These indications are in line with the experimental fact that both the 4Su and 2Du states of the S+ ion can be formed from the 2 2Pi and 1 2Sigma+ states of the OCS+ ion.  相似文献   

7.
The Hartree-Fock-Heitler-London, HF-HL, method is a new ab initio approach which variationally combines the Hartree-Fock, HF, and the Heitler-London, HL, approximations, yielding correct dissociation products. Furthermore, the new method accounts for nondynamical correlation and explicitly considers avoided crossing. With the HF-HL model we compute the ground-state potential energy curves for H2 [1Sigma+g], LiH [X 1Sigma+], BeH [2Sigma+], BH [1Sigma+], CH [2Pi], NH [3Sigma-], OH [2Pi], and FH [1Sigma+], obtaining in average 80% of the experimental binding energy with a correct representation of bond breaking. Inclusion of ionic configurations improves the computed binding energy. The computed dipole moment is in agreement with laboratory data. The dynamical and nondynamical correlation energies for atomic and molecular systems with 2-10 electrons are analyzed. For BeH the avoided crossing of the two lowest [2Sigma+] states is considered in detail. The HF-HL function is proposed as the zero-order reference wave function for molecular systems. To account for the dynamical correlation energy a post-HF-HL technique based on multiconfiguration expansions is presented. We have computed the potential energy curves for H2 [1Sigma+g], HeH [2Sigma+], LiH [X1Sigma+], LiH [A1Sigma+], and BeH [2Sigma+]. The corresponding computed binding energies are 109.26 (109.48), 0.01 (0.01), 57.68 (58.00), 24.19 (24.82), and 49.61 (49.83) kcal/mol, with the experimental values given in parentheses. The corresponding total energies are -1.1741, -3.4035, -8.0695, -7.9446, and -15.2452 hartrees, respectively, the best ab initio variational published calculations, H2 excluded.  相似文献   

8.
The electronic structure of the ground and low-lying states of the diatomic fluorides TiF, VF, CrF, and MnF was examined by multireference and coupled cluster methods in conjunction with extended basis sets. For a total of 34 states we report binding energies, spectroscopic constants, dipole moments, separation energies, and charge distributions. In addition, for all states we have constructed full potential curves. The suggested ground state binding energies of TiF(X (4)Phi), VF(X (5)Pi), CrF(X (6)Sigma(+)), and MnF(X (7)Sigma(+)) are 135, 130, 110, and 108 kcal/mol, respectively, with first excited states A (4)Sigma(-), A (5)Delta, A (6)Pi, and a (5)Sigma(+) about 2, 3, 23, and 19 kcal/mol higher. In essence all our numerical findings are in harmony with experimental results. For all molecules and states studied it is clear that the in situ metal atom (M) shows highly ionic character, therefore the binding is described realistically by M(+)F(-).  相似文献   

9.
New high-resolution visible emission spectra of the MgH molecule have been recorded with high signal-to-noise ratios using a Fourier transform spectrometer. Many bands of the A 2Pi-->X 2Sigma+ and B' 2Sigma+-->X 2Sigma+ electronic transitions of 24MgH were analyzed; the new data span the v' = 0-3 levels of the A 2Pi and B'2Sigma+ excited states and the v'=0-11 levels of the X 2Sigma+ ground electronic state. The vibration-rotation energy levels of the perturbed A 2Pi and B' 2Sigma+ states were fitted as individual term values, while those of the X 2Sigma+ ground state were fitted using the direct-potential-fit approach. A new analytic potential energy function that imposes the theoretically correct attractive potential at long-range, and a radial Hamiltonian that includes the spin-rotation interaction were employed, and a significantly improved value for the ground state dissociation energy of MgH was obtained. The v'=11 level of the X 2Sigma+ ground electronic state was found to be the highest bound vibrational level of 24MgH, lying only about 13 cm(-1) below the dissociation asymptote. The equilibrium dissociation energy for the X 2Sigma+ ground state of 24MgH has been determined to be De=11104.7+/-0.5 cm(-1) (1.37681+/-0.00006 eV), whereas the zero-point energy (v'=0) is 739.11+/-0.01 cm(-1). The zero-point dissociation energy is therefore D0=10365.6+/-0.5 cm(-1) (1.28517+/-0.00006 eV). The uncertainty in the new experimental dissociation energy of MgH is more than 2 orders of magnitude smaller than that for the best value available in the literature. MgH is now the only hydride molecule other than H2 itself for which all bound vibrational levels of the ground electronic state are observed experimentally and for which the dissociation energy is determined with subwavenumber accuracy.  相似文献   

10.
The electronic and geometric structure of the 3d-transition metal monocarbonyls MCO, M=Sc, Ti, V, and Cr was investigated through coupled cluster (CC) and multireference variational methods (MRCI) combined with large basis sets. For the ground and a few low-lying excited states complete potential energy profiles were constructed at the CC-level of theory. The M-CO dissociation energies of the ground states X 4Sigma-,X 5Delta,X 6Sigma+, and X 7A' are calculated to be 36, 27, 18, and 2 kcal/mol for ScCO, TiCO, VCO, and CrCO, with respect to Sc(4F),Ti(5F),V(6D),Cr(7S)+CO(X 1Sigma+). The bonding is rather complicated and could be attributed mainly to pi-conjugation effects between the M and CO pi-electrons, along with weak sigma-charge transfer from CO to M atoms. Almost in all cases the metal atoms appear to be slightly positively charged, at least according to the direction of the dipole moment vectors and the MRCI population densities.  相似文献   

11.
We report extensive spectroscopic measurements of rovibronic transitions from the MgO X 1Sigma+ ground state to the high-energy E 1Sigma+, F 1Pi1, and G 1Pi1 Rydberg states. Perturbations in the E 1Sigma+ and G 1Pi1 states were observed. The Rydberg molecular orbital character of the three states is examined, given ab initio calculations by Thummel et al. [Chem. Phys. 129, 417 (1989)]. It is concluded that the E 1Sigma+ and G 1Pi1 states consist primarily of the MgO+ X 2Pi ionic core, surrounded by 3ppi and 3psigma Rydberg electron clouds, respectively, and that the F 1Pi1 state consists primarily of the MgO+ A 2Sigma+ ionic core surrounded by a 3ppi Rydberg electron cloud. Spectroscopic characterizations of some unassigned vibrational levels of analogous MgO 3Pi2 states in this energy region are also reported.  相似文献   

12.
The electronic structure of a series of low-lying excited triplet and quintet states of scandium boride (ScB) was examined using multireference configuration interaction (including Davidson's correction for quadruple excitations) and single-reference coupled cluster (CC) methods with averaged natural orbital (ANO) basis sets. The CC approach was used only for the lowest quintet state. The authors have analyzed eight low-lying triplets 3Sigma-(2), 3Sigma+, 3Pi(3), and 3Delta(2) dissociating to Sc(2D)/B(2P) atoms and eight low-lying quintet states 5Sigma-, 5Sigma+, 5Pi(2), 5Phi, and 5Delta(3) dissociating to Sc(4F)/B(2P) atoms. They report the potential energy curves and spectroscopic parameters of ScB obtained with the multireference configuration interaction (MRCI) technique including all singly and doubly excited configurations obtained with the ANO-S basis set. For the two lowest states they obtained also improved ANO-L spectroscopic constants, dipole and quadrupole moments as well as scalar relativistic effects based on the Douglas-Kroll-Hess Hamiltonian. They provide the analysis of the bonding based on Mulliken populations and occupation numbers. Since the two lowest states, 3Sigma- and 5Sigma-, lie energetically very close, their principal goal was to resolve the nature of the ground state of ScB. Their nonrelativistic MRCI(Q) (including Davidson correction) results indicate that the quintet is more stable than the triplet by about 800 cm(-1). Inclusion of scalar relativistic effects reduces this difference to about 240 cm(-1). The dissociation energies for 5Sigma- ScB range from 3.20 to 3.30 eV while those for the 3Sigma- range from 1.70 to 1.80 eV.  相似文献   

13.
The electronic structure and bonding of the ground and some low-lying states of all first row transition metal borides (MB), ScB, TiB, VB, CrB, MnB, FeB, CoB, NiB, and CuB have been studied by multireference configuration interaction (MRCI) methods employing a correlation consistent basis set of quintuple cardinality (5Z). It should be stressed that for all the above nine molecules, experimental results are essentially absent, whereas with the exception of ScB and CuB the remaining seven species are studied theoretically for the first time. We have constructed full potential energy curves at the MRCI/5Z level for a total of 27 low-lying states, subsequently used to extract binding energies, spectroscopic parameters, and bonding schemes. In addition, some 20 or more states for every MB species have been examined at the MRCI/4Z level of theory. The ground state symmetries and corresponding binding energies (in kcal/mol) are 5Sigma-(ScB), 76; 6Delta(TiB), 65; 7Sigma+(VB), 55; 6Sigma+(CrB), 31; 5Pi(MnB), 20; 4Sigma-(FeB), 54; 3Delta(CoB), 66; 2Sigma+(NiB), 79; and 1Sigma+(CuB), 49.  相似文献   

14.
The electronic structure and bonding of 19 states of the diatomic nickel carbide (NiC) has been studied by multireference methods. Potential energy curves have been constructed for all states, whereas for the three lowest states of symmetries X (1)Sigma(+), a (3)Pi, and A (1)Pi well separated from the rest of the states, special attention was paid through the use of very large basis sets and the calculation of core-valence correlation and scalar relativistic effects. The recommended binding energies for these states are 91, 67, and 54 kcal/mol with respect to the ground state atoms. Our results in general can be considered in fair agreement with the limited experimental findings.  相似文献   

15.
The mechanisms of the reactions of W and W+ with NOx (x=1, 2) were studied at the CCSD(T)/[SDD+6-311G(d)]//B3LYP/[SDD+6-31G(d)] level of theory. It was shown that the insertion pathway of the reaction W(7S)+NO2(2A1) is a multistate process, which involves several lower lying electronic states of numerous intermediates and transition states, and leads to oxidation, WO(3Sigma)+NO(2Pi), and/or nitration, WN(4Sigma)+O2(3Sigmag-), of the W-center. Oxidation products WO(3Sigma)+NO(2Pi) lie 87.6 kcal/mol below the reactants, while the nitration channel is only 31.0 kcal/mol exothermic. Furthermore, it was shown that nitration of W with NO2 is kinetically less favorable than its oxidation. The addition-dissociation pathway of the reaction W(7S)+NO2(2A1) proceeds via the octet (ground) state potential energy surface of the reaction, requires 3.3 kcal/mol barrier, and leads exclusively to oxidation products. Calculations show that oxidation of the W+ cation by NO2 is a barrierless process in the gas phase, proceeds exclusively via the insertion pathway, and is exothermic by 82.9 kcal/mol. The nitration of W+ by NO2 is only 14.1 kcal/mol exothermic and could be accessible only under high-temperature conditions. Reactions of M=W/W+ with NO are also barrierless processes in the gas phase and lead to the N-O insertion product NMO, which are 105.4 and 77.4 kcal/mol lower than the reactants for W and W+, respectively.  相似文献   

16.
Within an energy range of 2.4 eV, we have explored 29 of the 36 states of the diatomic molecule VC that arise from the atoms in their ground state, V(4s23d3;4F)+C(2s2 2p2;3P). We use multireference methods with large atomic natural orbital basis sets. The ground state is of 2Delta symmetry with the first two excited states, 4Delta and 2Sigma+, located 4.2 and 7.0 kcal/mol above the X state. All the states examined in this work are relatively strongly bound and show significant charge transfer from V to C. The binding energy of the X 2Delta state is estimated to be 95.3 kcal/mol in good agreement with the experimental value.  相似文献   

17.
The notoriously small X 3Pi-a 1Sigma+ excitation energy of the BN diatomic has been calculated using high-order coupled cluster methods. Convergence has been established in both the one-particle basis set and the coupled cluster expansion. Explicit inclusion of connected quadruple excitations T4 is required for even semiquantitative agreement with the limit value, while connected quintuple excitations T5 still have an effect of about 60 cm(-1). Still higher excitations only account for about 10 cm(-1). Inclusion of inner-shell correlation further reduces Te by about 60 cm(-1) at the CCSDT, and 85 cm(-1) at the CCSDTQ level. Our best estimate, Te = 183+/-40 cm(-1), is in excellent agreement with earlier calculations and experiment, albeit with a smaller (and conservative) uncertainty. The dissociation energy of BN(X 3Pi) is De = 105.74+/-0.16 kcal/mol and D0 = 103.57+/-0.16 kcal/mol.  相似文献   

18.
The electronic and geometric structures of gallium dinitride GaN 2, and gallium tetranitride molecules, GaN 4, were systematically studied by employing density functional theory and perturbation theory (MP2, MP4) in conjunction with the aug-cc-pVTZ basis set. In addition, for the ground-state of GaN 4( (2)B 1) a density functional theory study was carried out combining different functionals with different basis sets. A total of 7 minima have been identified for GaN 2, while 37 structures were identified for GaN 4 corresponding to minima, transition states, and saddle points. We report geometries and dissociation energies for all the above structures as well as potential energy profiles, potential energy surfaces and bonding mechanisms for some low-lying electronic states of GaN 4. The dissociation energy of the ground-state GaN 2 ( X (2)Pi) is 1.1 kcal/mol with respect to Ga( (2)P) + N 2( X (1)Sigma g (+)). The ground-state and the first two excited minima of GaN 4 are of (2)B 1( C 2 v ), (2)A 1( C 2 v , five member ring), and (4)Sigma g (-)( D infinityh ) symmetry, respectively. The dissociation energy ( D e) of the ground-state of GaN 4, X (2)B 1, with respect to Ga( (2)P) + 2 N 2( X (1)Sigma g (+)), is 2.4 kcal/mol, whereas the D e of (4)Sigma g (-) with respect to Ga( (4)P) + 2 N 2( X (1)Sigma g (+)) is 17.6 kcal/mol.  相似文献   

19.
Highly correlated coupled cluster methods with single and double excitations (CSSD) and CCSD with perturbative triple excitations were used to predict molecular structures and harmonic vibrational frequencies for the electronic ground state X 1Sigma+, and for the 3Delta, 3Sigma+, 3Phi, 1 3Pi, 2 3Pi, 1Sigma+, 1Delta, and 1Pi excited states of NiCO. The X 1Sigma+ ground state's geometry is for the first time compared with the recently determined experimental structure. The adiabatic excitation energies, vertical excitation energies, and dissociation energies of these excited states are predicted. The importance of pi and sigma bonding for the Ni-C bond is discussed based on the structures of excited states.  相似文献   

20.
Potential energy curves, energy parameters, and spectroscopic values for the X (2)Sigma(+), A (2)Pi, B (2)Sigma(+), a (4)Pi, and b (4)Sigma(+), states of CaH have been calculated using the multireference configuration interaction and coupled cluster levels of theory, while employing quantitative basis sets (of augmented quintuple-zeta quality) and taking also into account core/valence correlation and one-electron relativistic effects. For the ground (X (2)Sigma(+)) and the first two following excited states (A (2)Pi, B (2)Sigma(+)) of CaH, the permanent electric dipole moments have been calculated. Our best finite field dipole moment of the A (2)Pi state of 2.425 D (upsilon = 0) is in very good agreement with the experimental literature value of 2.372(12) D. However, a discrepancy is observed in the dipole moment of the X (2)Sigma(+) state. Our most extensive calculation gives mu = 2.623 D (upsilon = 0), which is considerably smaller than the experimental value of mu = 2.94(16) D (upsilon = 0). Small van der Waals minima were found for both "repulsive" quartet states. Spectroscopic constants and energy parameters for all states are in remarkable agreement with available experimental values.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号