首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, we have reported a new method of preparing self-assembled monolayers (SAMs) of decanethiol and hexadecanethiol on gold surface by using a lyotropic liquid crystalline phase as an adsorbing medium. The stability and blocking ability of these SAMs were characterized using grazing angle Fourier transform infrared (FTIR) spectroscopy and electrochemical techniques such as cyclic voltammetry and electrochemical impedance spectroscopy. The lyotropic liquid crystalline medium possesses a hexagonal structure consisting of a nonionic surfactant Triton X-100, water, and the corresponding thiol, which provides a highly hydrophobic environment to solubilize the alkanethiols and later to facilitate their delivery to the gold surface. We find that the SAMs formed from the hexagonal liquid crystalline phase are highly compact and have excellent electrochemical blocking ability towards the redox probes compared to conventional SAMs prepared from commonly used organic solvents such as ethanol. From the impedance studies, we have determined the capacitance of the monolayer-coated electrodes and the surface coverage of the SAM, which has been found to be >99.98% on gold surface. We have also estimated the extent of ionic permeability through the film and measured the rate constants for the redox reactions on the SAM-modified electrodes. Our results show that the rate constants of [Fe(CN)6](3-/4-) and [Ru(NH3)6](2+/3+) redox couples are very much lower in the case of monolayers prepared in liquid crystalline phase compared to the SAM formed in 1 mM thiol in ethanol solution, suggesting a better blocking ability of the SAMs in the former case. From the grazing angle FTIR spectroscopic studies and capacitance measurements, we have ruled out any coadsorption of surfactant molecules on the Au surface. These results suggest that SAMs of very low defect density and extremely low ionic permeability can be obtained when a hexagonal lyotropic liquid crystalline phase is used as an adsorbing medium.  相似文献   

2.
5,10,15,20-Tetra-[(p-alkoxy-m-ethyloxy)phenyl]porphyrin and [5-(p-alkoxy)phenyl-10,15,20-tri-phenyl]porphyrin and their holmium(III) complexes are reported. They display a hexagonal columnar discotic columnar (Colh) liquid crystal phase and were studied by cyclic voltammetry, surface photovoltage spectroscopy (SPS), electric-field-induced surface photovoltage spectroscopy (EFISPS) and luminescence spectroscopy. Within the accessible potential window, all these compounds exhibit two one-electron reversible redox reactions. Quantum yields of Q band are in the region 0.0045–0.21 at room temperature. The SPS and EFISPS reveal that all the compounds are p-type semiconductors and exhibit photovoltaic response due to π–π* electron transitions.  相似文献   

3.
Producing macrocyclic mesogens that are responsive to guest encapsulation presents a significant challenge. Cyclo[6]aramides, a type of macrocycle with a hydrogen‐bond‐constrained backbone, exhibit thermotropic lamellar, discotic nematic, hexagonal, and rectangular columnar mesophases over a considerably wide temperature range, including at room temperature. Additionally, cyclo[6]aramides show unusual mesophase transitions from lamellar to hexagonal columnar phase mediated by macrocyclic host–guest (H–G) interactions between the macrocycles and alkylammonium salts. The phase transition, triggered by an organic guest engaging in H–G interactions with a macrocyclic cavity, provides a novel strategy for manipulating the properties of liquid‐crystalline materials. The crystal structure of a homologous cyclo[6]aramide reveals a disk‐shaped, near‐planar molecular backbone that facilitates intermolecular π–π stacking and leads to columnar assembly.  相似文献   

4.
Electrochemical impendence spectroscopy (EIS), cyclic voltammetry (CV) and differential pulse voltammetry (DPV) were performed to investigate the barrier properties and electron transfer of derivatized thiol self-assembled monolayers (SAMs) on gold in the presence of surfactants. The thiol derivatives used included 2-mercaptoethanesulfonic acid (MES), 2-mercaptoacetic acid (MAA), and N-acetyl-L-cysteine (NAC). A simple equivalent circuit was derived to fit the impedance spectra very well. The negative redox probe [Fe(CN)6](3-/4-) was selected to indicate the electron-transfer efficiency on the interface of the studied electrodes. It was found that by changing the surface structure of SAMs, different surfactants could regulate the barrier properties and electron-transfer efficiency in different ways. A positively charged surfactant lowered the electrostatic repulsion between the negative redox probe and negatively charged surface groups of a monolayer, while enhancing the reversibility of electron transfer by virtue of increasing the redox probe concentration within the electric double-layer region. A neutral surfactant showed no significant effect, while a negative surfactant hindered the access and reaction of redox probe by electrostatic repulsion of same-sign charges.  相似文献   

5.
Self-assembled monolayers (SAMs) of liquid crystalline thiol-terminated alkoxycyanobiphenyl molecules with different alkyl chain lengths on Au surface have been studied for the first time using electrochemical techniques such as cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The barrier property of the SAM-modified surfaces was evaluated using two different redox probes, namely potassium ferro/ferri cyanide and hexaammineruthenium(III) chloride. It was found that for short-length alkyl chain thiol (C5) the electron transfer reaction of hexaammineruthenium(III) chloride takes place through tunneling mechanism. In contrast, redox reaction of potassium ferro/ferri cyanide is almost completely blocked by the SAM-modified Au surface. From the impedance data, a surface coverage value of >99.9% was calculated for all the thiol molecules.  相似文献   

6.
《Analytical letters》2012,45(8):1416-1430
The electrochemical oxidation of triphenylphosphine (Ph3P) was investigated by means of cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) on glassy-carbon (GC), gold (Au) and multi-walled carbon nanotubes (MWCNT) in acetonitrile (ACN), dichloromethane (DCM), and cyclohexanone (CHN). The electron-transfer kinetics of the redox couple PPh3/Ph3P·+ on various electrodes was found to increase with the order: Au < MWCNT < GC. The EIS results verify that GC provides faster charge-transfer kinetics since it affords less charge-transfer resistance and thus lower electron-transfer barrier from other electrodes tested. In DCM and CHN greater deviation from reversibility was observed which can be attributed to the poorer polarity of the solvents, which provides an additional barrier for the electron-transfer process.

[Supplemental materials are available for this article. Go to the publisher's online edition of Analytical Letters for the following free supplemental resource(s): additional tables and figures.]  相似文献   

7.
Cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and digital simulation techniques were used to investigate quantitatively the mechanism of electron transfer (ET) through densely packed and well-ordered self-assembled monolayers (SAMs) of 11-mercaptoundecanoic acid on gold, either pristine or modified by physically adsorbed glucose oxidase (GOx). In the presence of ferrocenylmethanol (FcMeOH) as a redox mediator, ET kinetics involving either solution-phase hydrophilic redox probes such as [Fe(CN)6]3-/4- or surface-immobilized GOx is greatly accelerated: [Fe(CN)6]3-/4- undergoes diffusion-controlled ET, while the enzymatic electrochemical conversion of glucose to gluconolactone is efficiently sustained by FcMeOH. Analysis of the results, also including the digital simulation of CV and EIS data, showed the prevalence of an ET mechanism according to the so-called membrane model that comprises the permeation of the redox mediator within the SAM and the intermolecular ET to the redox probe located outside the monolayer. The analysis of the catalytic current generated at the GOx/SAM electrode in the presence of glucose and FcMeOH allowed the high surface protein coverage suggested by X-ray photoelectron spectroscopy (XPS) measurements to be confirmed.  相似文献   

8.
Substituted bis(phthalocyaninato) rare earth complexes ML2 (M = Y and Ce; L = [Pc(OC8H17)8]2, where Pc = phthalocyaninato) were adsorbed onto single crystalline Au(111) electrodes from benzene saturated with either YL2 or CeL2 complex at room temperature. In situ scanning tunneling microscopy (STM) and cyclic voltammetry (CV) were used to examine the structures and the redox reactions of these admolecules on Au(111) electrodes in 0.1 mol dm(-3) HClO4. The CVs obtained with YL2- and CeL2-coated Au(111) electrodes respectively contained two and three pairs of redox peaks between 0 and 1.0 V (versus reversible hydrogen electrode). STM molecular resolution revealed that YL2 and CeL2 admolecules were imaged as spherical protrusions separated by 2.3 nm, which suggests that they were oriented with their molecular planes parallel to the unreconstructed Au(111)-(1 x 1). Both molecules when adsorbing from approximately micromolar benzene dosing solutions produced mainly ordered arrays characterized as (8 x 5 radical3)rect (theta = 0.0125). The redox reactions occurring between 0.2 and 1.0 V caused no change in the adlayer, but they were desorbed or oxidized at the negative and positive potential limits. The processes of adsorption and desorption at the negative potentials were reversible to the modulation of potential. Electrochemical impedance spectroscopy (EIS) and CV measurements showed that YL2 and CeL2 adlayers could block the adsorption of perchlorate anions and mediating electron transfer at the Au(111) electrode, leading to the enhancement of charge transfer for the ferro/ferricyanide redox couple.  相似文献   

9.
合成了3种含有不同长度烷基链的苯并菲盘状液晶化合物; 通过1H NMR 和 MALDI-TOF MS对其结构进行了表征; 利用差示扫描量热法(DSC)、热台偏光显微镜(POM)和小角X射线散射实验(SAXS)对3种液晶化合物的自组装行为进行了研究. 结果表明, 烷基链的长度对苯并菲盘状液晶化合物自组装结构的影响显著. 柔性链为辛基的苯并菲盘状液晶化合物自组装成六方柱状液晶相; 柔性链为十二烷基的化合物自组装成倾斜柱状液晶相; 而柔性链为十六烷基的化合物则未形成液晶相.  相似文献   

10.
By controlling the mol ratios of reactants, novel calix[4]resorcinarene–triphenylene monomer, dimer and tetramer were designed and synthesised in yields of 50–60% via Click chemistry. Their structures were characterised by NMR and MS. Their liquid crystalline behaviours were studied by differential scanning calorimetry, polarising optical microscopy and X-ray diffraction analysis. The more triphenylene units on calix[4]resorcinarene resulted in the wider temperature scopes of mesophase and higher phase transition temperatures. The monomer 6 and dimer 7 showed the mixed columnar mesophase with hexagonal columnar structure and disordered lamellar columnar structure, and compound 8 possessed only disordered lamellar columnar mesophase. These research results suggest that calix[4]resorcinarene was a good platform to construct columnar liquid crystal and the mesomorphic properties were greatly influenced by the substituted numbers of mesogen units on calix skeleton.  相似文献   

11.
A series of poly(6-azulenylethynyl)benzenes substituted with n-hexyloxycarbonyl chains at 1,3-positions in azulene rings, i.e., hexakis-, 1,2,4,5-tetrakis-, 1,3,5-tris-, and 1,4-bis(6-azulenylethynyl)benzene derivatives 1, 2, 3, and 4b, have been prepared by a simple one-pot reaction involving repeated Pd-catalyzed alkynylation of halogenated arenes with substituted 6-ethynylazulene and/or ethynylated arenes with substituted 6-bromoazulene under Sonogashira-Hagihara conditions. The redox behavior of these novel poly(6-azulenylethynyl)benzene derivatives was examined by cyclic voltammetry (CV), which revealed the presumed multielectron redox properties. Compound 4b exhibited a one-step, two-electron reduction wave upon CV, which revealed the formation of the dianion stabilized by two 6-azulenylethynyl substituents under electrochemical reduction conditions. Four 6-azulenylethynyl substituents on a benzene ring in a 1,2,4,5 relationship increased the electron-accepting properties because of the formation of a stabilized closed-shell dianionic structure, whereas 3 was reduced at more negative reduction potentials. In contrast to the multistep redox behavior of 2, compound 1 was reduced in one step at -1.28 V upon CV. Compound 1 showed a wide temperature range of columnar mesophases (Col(ho) and Col(ro)) from 77.3 degrees C to the decomposition temperature at ca. 270 degrees C. Compounds 2, 3, and 4b exhibited columnar mesomorphism (Col(ro)) with crystalline polymorphs for 2, unusual triple-melting behavior for 3, and both double-melting behavior and columnar mesomorphism (Col(ho)) for 4b. Therefore, the investigated systems exemplify a new principle for multielectron redox behavior with liquid crystalline properties.  相似文献   

12.
Twelve 5, 10, 15, 20-tetra[(4-alkoxy-3-ethyloxy)phenyl]porphyrin hydroxylanthanide complexes Ln[(CnOEOP)4P](OH) (n = 12, 14, 16;Ln = Tb, Dy, Er, Yb) and three ligands have been synthesized and their composition, structure and spectral properties studied. Their liquid crystalline behaviour is also presented. Differential scanning calorimetry and polarizing optical microscopy reveal that all exhibit a discotic liquid crystalline phase. X-ray diffraction shows that the mesophase is a hexagonal columnar, Colh. The lanthanide ion, which is coordinated to the four nitrogen atoms of the porphyrin and to the oxygen atom of the hydroxyl group, is out of the porphyrin molecular plane. All the complexes are stable below 200°C and undergo complete decomposition at 800°C. The fluorescence quantum yields of the lanthanide complexes are much lower than those of the corresponding ligands. The electrochemical studies show that the redox potentials do not change on varying the chain length.  相似文献   

13.
The connection of twelve peripheral and divergent dodecyloxy chains to a central tridentate aromatic binding unit provides the dodecacatenar ligand L11, for which room-temperature mesomorphism is detected. An enthalpically unbalanced large melting entropy (DeltaSmL11=226 J mol(-1) K(-1)) results from the programmed microsegregation induced in the crystalline phase, a phenomenon which is maintained in the associated lanthanide complexes [Ln(L11)(NO3)3] and [Ln(L11)(CF3CO2)3]2. Low-temperature melting processes (-43相似文献   

14.
A novel electrochemical DNA-based biosensor for the detection of deep DNA damage was designed employing the bionanocomposite layer of multiwalled carbon nanotubes (MWNT) in chitosan (CHIT) deposited on a screen printed carbon electrode (SPCE). The biocomponent represented by double-stranded (ds) herring sperm DNA was immobilized on this composite using layer-by-layer coverage to form a robust film. Individual and complex electrode modifiers are characterized by a differential pulse voltammetry (DPV) with the DNA redox marker [Co(phen)(3)](3+), cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) with [Fe(CN)(6)](3-) as a redox probe in a phosphate buffer solution (PBS). A good correlation between the CV and EIS parameters has been found, thus confirming a strong effect of MWNT on the enhancement of the electroconductivity of the electrode surface and that of CHIT on the MWNT distribution at the electrode surface. Differences between the CV and EIS signals of the electrodes without and with DNA are used to detect deep damage to DNA, advantageously using simple working procedures in the same experiment.  相似文献   

15.
A new method of forming stable dispersions of alkanethiol and aromatic thiol stabilized gold nanoparticles in two different lyotropic liquid crystalline mediums, namely, a columnar hexagonal phase made up of a Triton X-100/water system and an inverse columnar hexagonal phase made up of pure AOT, are presented. The dispersions have been characterized using small-angle X-ray scattering (SAXS) and polarizing optical microscopy. Our studies show that the gold nanoparticles are distributed outside the columns formed by both the surfactants. Such dispersions can find applications in the study of nanoparticles as well as in the development of devices based on some unique properties of metal nanoparticles.  相似文献   

16.
Little is known about transient intermediates in photoinduced electron-transfer reactions of metalloproteins. Oxidative quenching of the triplet state of zinc cytochrome c, 3Zncyt, is done at 20 degrees C, pH 7.00, and ionic strength of 1.00 M, conditions that suppress the thermal back-reaction and prolong the lifetime of the cation radical, Zncyt+. This species is reduced by [Fe(CN)6]4-, [W(CN)8]4-, [Os(CN)6]4-, [Mo(CN)8]4-, and [Ru(CN)6]4- complexes of similar structures and the same charge. The rate constants and thermodynamic driving forces for these five similar electron-transfer reactions were fitted to Marcus theory. The reorganization energy of Zncyt+ is lambda = 0.38(5) eV, lower than that of native cytochrome c, because the redox orbital of the porphyrin cation radical is delocalized and possibly because Met80 is not an axial ligand to the zinc(II) ion in the reconstituted cytochrome c. The rate constant for electron self-exchange between Zncyt+ and Zncyt, k11 = 1.0(5) x 10(7) M(-1) s(-1), is large owing to the extended electron delocalization and relatively low reorganization energy. These results may be relevant to zinc(II) derivatives of other heme proteins, which are often used in studies of photoinduced electron-transfer reactions.  相似文献   

17.
A pH-sensitive polymer interface has been used as a matrix for reversible immobilization of cytochrome c (Cyt c) on an Au surface through a dip-coating process. The pH-sensitive behavior of the polymer brush interface has been demonstrated by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) measurements. The reversible immobilization and electron-transfer properties of Cyt c have been investigated by in situ UV/Vis spectrophotometry and CV. The results have shown that the poly(acrylic acid) (PAA) brush acted as an excellent adsorption matrix and a good accelerant for the direct electron transfer of Cyt c, which gave redox peaks with a formal potential of 40 mV versus Ag/AgCl in pH 7.6 phosphate buffer solution. The average surface coverage of Cyt c on the PAA film was about 1.7 x 10(-10) mol cm(-2), indicating a multilayer of Cyt c. The electron-transfer rate constant was calculated to be around 0.19 s(-1) according to the CV experiments. The interface was subjected to in situ attenuated total internal reflection Fourier-transform infrared (ATR-FTIR) spectroscopic analysis, in order to further confirm the immobilization of Cyt c on the surface. This polymer-protein system may have potential applications in the design of biosensors, protein separation, interfacial engineering, biomimetics, and so on.  相似文献   

18.
Twelve 5, 10, 15, 20‐tetra[(4‐alkoxy‐3‐ethyloxy)phenyl]porphyrin hydroxylanthanide complexes Ln[(C n OEOP)4P](OH) (n?=?12, 14, 16;Ln?=?Tb, Dy, Er, Yb) and three ligands have been synthesized and their composition, structure and spectral properties studied. Their liquid crystalline behaviour is also presented. Differential scanning calorimetry and polarizing optical microscopy reveal that all exhibit a discotic liquid crystalline phase. X‐ray diffraction shows that the mesophase is a hexagonal columnar, Colh. The lanthanide ion, which is coordinated to the four nitrogen atoms of the porphyrin and to the oxygen atom of the hydroxyl group, is out of the porphyrin molecular plane. All the complexes are stable below 200°C and undergo complete decomposition at 800°C. The fluorescence quantum yields of the lanthanide complexes are much lower than those of the corresponding ligands. The electrochemical studies show that the redox potentials do not change on varying the chain length.  相似文献   

19.
The synthesis of ten benzyl ether based self-assembling monodendrons containing benzo[15]crown-5 at their focal point is presented. These dendritic building blocks self-assemble either directly or via complexation with NaOTf in two-dimensional smectic B, smectic A, and p6mm hexagonal columnar (Phi(h)) and three-dimensional Pm3n cubic lattices. Retrostructural analysis of these lattices and of the lattices generated from the same monodendrons containing various other functional groups at their focal point by X-ray diffraction experiments provided for the first time a correlation between the molecular structure and the shape of the monodendron, the shape of the supramolecular dendrimer and the symmetry of the lattice. It has been shown that complexation with NaOTf provides the following five different trends: a) stabilization of the three-dimensional Pm3n cubic lattice self-organized from spherical dendrimers that are self-assembled from conic monodendrons; b) stabilization of the two-dimensional S(A) phase generated from parallel-piped monodendrons; c) no effect on the stability of the two-dimensional S(B) phase generated from parallel-piped monodendrons; d) stabilization of the two-dimensional p6mm hexagonal columnar phase self-organized from cylindrical supramolecular dendrimers that are self-assembled from tapered monodendrons; and e) destabilization of the two-dimensional p6mm hexagonal columnar phase self-organized from cylindrical supramolecular dendrimers self-assembled from half-disc monodendrons. Mechanisms of NaOTf mediated self-assembly processes were suggested. These monodendritic crown ethers and their NaOTf complexes provide the largest diversity of liquid crystalline phases encountered so far in any library of supramolecular dendrimers.  相似文献   

20.
Zhixin Zhao  Guofa Liu 《Liquid crystals》2002,29(10):1335-1337
Hydroxy [5,10,15,20-tetra[ p -decyloxy- m -methyloxy)phenyl]porphyrin Yb(III) exhibits a discotic hexagonal columnar phase, it is the first example of a monoporphyrin rare earth complex liquid crystal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号