首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
研究了手性溶剂法测定2,4-滴丙酸的^1H、^13C谱,在满足NMR准确定量所要求的分离度和信噪比的条件下,能准确测定手性化合物的对映体纯度。比较了以对映体百分含量(R%)和对映体过量(ee)表示手性农药的对映体纯度的差别,发现以对映体百分含量代替对映体过量来表示手性农药的对映体纯度更为准确。  相似文献   

2.
Four chiral basic analytes, namely methadone, fluoxetine, venlafaxine, and tramadol, were selected as model compounds for investigating their stereoselective separation with highly sulfated gamma-cyclodextrin (HS gamma-CD) by capillary electrophoresis (CE)-UV and CE-mass spectrometry (MS). At high concentration of chiral selector, the preferentially bonded enantiomer migrated faster in the anodic mode to the detector and high resolutions were obtained for all analytes. In the cathodic mode, at lower highly sulphated cyclodextrin (HS-CD) concentration, basic compounds could be detected, with the weakly bonded enantiomer migrating first (enantiomeric migration order inversion). It was also then possible, at intermediate HS-CD concentration, that only one enantiomer migrated to the detector as cation while the other enantiomer complexed with the CD was negatively charged and presented an opposite mobility. The latter never reached the detector achieving a perfect enantiomeric selectivity. Infinite chiral resolutions were thus achieved by CE-UV as well as by CE-electrospray ionisation (ESI)-MS where concentrations of HS-CD were adapted according to the negative contribution of the nebulization gas pressure of the interface.  相似文献   

3.
An enantioselective assay for the determination of methadone and its main metabolite 2‐ethylidene‐1,5‐dimethyl‐3,3‐diphenylpyrrolidine in equine plasma based on capillary electrophoresis with highly sulfated γ‐cyclodextrin as chiral selector and electrokinetic analyte injection is described. The assay is based on liquid/liquid extraction of the analytes at alkaline pH from 0.1 mL plasma followed by electrokinetic sample injection of the analytes from the extract across a buffer plug without chiral selector. Separation occurs cationically at normal polarity in a pH 3 phosphate buffer containing 0.16% (w/v) of highly sulfated γ‐cyclodextrin. The developed assay is precise (intra‐ and interday RSD < 4% and < 7%, respectively), is capable to determine enantiomer levels of methadone and 2‐ethylidene‐1,5‐dimethyl‐3,3‐diphenylpyrrolidine in plasma down to 2.5 ng/mL, and was successfully applied to monitor enantiomer drug and metabolite levels in plasma of a pony that was anesthetized with racemic ketamine and isoflurane and received a bolus of racemic methadone and a bolus followed by constant rate infusion of racemic methadone. The data suggest that the assay is well suited for pharmacokinetic purposes.  相似文献   

4.
Kim B  Chung DS 《Electrophoresis》2002,23(1):49-55
Highly sensitive nonaqueous capillary electrophoresis of weakly acidic organic compounds has been performed using methanol as the run buffer solvent. Methanol provided appropriate suppression of the electroosmotic flow and an increase in the electrophoretic mobilities of anionic solutes compared to water. These two effects allowed large-volume stacking using the electroosmotic flow pump (LVSEP) to be achieved for larger anions using a bare fused-silica capillary under an electric field of reverse polarity, whereas only fast-moving small anions were previously known to be suitable for LVSEP in aqueous media. A field-enhanced sample injection of an additional amount of analytes during the solvent plug removal further enhanced the limits of detection to below the nanomolar range with conventional UV absorption detection. Under optimum conditions, excellent linear responses and reproducibility in the migration times together with the corrected peak areas for ten analytes were obtained in the concentration range of 10-100 nM.  相似文献   

5.
Matrix-assisted laser-desorption ionization time-of-flight (MALDI-TOF) mass spectrometry (MS) and nuclear magnetic resonance (NMR) spectroscopy were employed to characterize two different sulfated beta-cyclodextrins (HS-beta-CD). It was found that the HS-beta-CDs have broad heterogeneity in terms of sulfation degree. The average sulfate contents were in the range of 6 to 8 per CD molecule. Furthermore the sugar moieties of both HS-beta-CDs were sulfated either at position 6 or at positions 2 and 6, but not at position 3. Enantiomeric separation by capillary zone electrophoresis (CZE) using the HS-beta-CDs as chiral selectors showed that these CDs exhibited similar chiral selectivity and resolution of the ephedrine enantiomers. One of the CDs was employed for the enantiomeric purity evaluation of (1R,2S)-ephedrine (or (-)-ephedrine) by capillary zone electrophoresis. Quantification was done by comparison between the corrected peak areas of the minor enantiomer and (-)-ephedrine.  相似文献   

6.
The possibility to enhance resolution to infinite value in chiral capillary electrophoresis is attained as soon as the apparent mobility of one enantiomer becomes opposite to the other. This could be achieved on the basis of the carrier ability of multiple charged chiral selectors such as highly sulfated cyclodextrin (HS-CD). With tramadol and its phase I metabolites selected as model compounds, the HS-gamma-CD was found to be the most appropriate chiral selector. The CD concentration was determined where one enantiomer still migrated as a cation while the other migrated in the opposite side. Besides the chiral selector concentration, secondary parameters such as buffer concentration appeared to be critical to reach infinite resolution. The latter was achieved with partial filling technique using ultrashort separation zones (a few mm). In order to better understand the interaction mechanism between the selected CD and the analytes, the classical affinity capillary electrophoresis method, although not fully satisfactory because of ionic strength variations within a series of mobility shift measurements, was applied to estimate complexation constants and complex mobilities. The results obtained point to the prevailing role of complex mobility differences in the enantioselectivity mechanism.  相似文献   

7.
Baseline separation of 18 new substituted benzimidazole derivatives, potent AMP‐activated protein kinase (AMPK) activators, with one chiral center, was achieved by CD‐EKC using sulfated and highly sulfated CDs (SCDs and HS‐CDs) as chiral selectors. The influence of the type and concentration of the chiral selectors on the enantioseparations was investigated. The SCDs exhibit a very high enantioselectivity power since they allow excellent enantiomeric resolutions compared to those obtained with the neutral CDs. The enantiomers were resolved with analysis times around 6 min using 25 mM phosphate buffer at pH 2.5 containing either β‐S‐CD, HS‐β‐CD, HS‐γ‐CD (3 or 4% w/v) at 25°C, with a voltage of 20 kV. The apparent association constants of the inclusion complexes were calculated. The study of the solute structure‐enantioseparation relationships seems to show the high contribution of the interactions between the solutes phenyl ring and the CDs to the enantiorecognition process. The optimized method was briefly validated (LOD less than 1%) and the purity of enantiomers of compound 3 was determined. The enantiomer migration shows reversal order depending on the kind of CD.  相似文献   

8.
Forty-one chiral sulfoxides and sulfinate esters were separated using sulfated beta-cyclodextrin and carboxymethyl beta-cyclodextrin as chiral selectors. Binding constants of some analytes to both chiral selectors were measured in order to examine and help explain the observed migration behavior and enantioselectivity trends. Overall, sulfated beta-cyclodextrin separated a greater number of compounds, and had better separating capabilities than did carboxymethyl beta-cyclodextrin for these analytes. This was true even though all of the analytes showed much stronger binding to carboxymethyl beta-cyclodextrin than to sulfated beta-cyclodextrin. General procedures to optimize the separation, by varying pH, selector concentration, and organic modifier concentration were examined and discussed. Chiral selector concentration had the greatest effect on enantioseparation, with higher concentrations of selector giving better peak-to-peak separations. Organic modifier had an adverse affect on resolution, with increasing amounts giving lower mobility differences. Lastly, pH had only a minimal effect on separation.  相似文献   

9.
Lin CE  Lin SL  Fang IJ  Liao WS  Chen CC 《Electrophoresis》2004,25(16):2786-2794
We investigated the enantioseparations of racemic hydrobenzoin, together with benzoin and benzoin methyl ether, in capillary electrophoresis (CE) using the single-isomer heptakis(2,3-dihydroxy-6-O-sulfo)-beta-cyclodextrin (SI-S-beta-CD) as a chiral selector in the presence and absence of borate complexation and enantiomer migration reversal of hydrobenzoin with a dual CD system consisting of SI-S-beta-CD and beta-CD in the presence of borate complexation at pH 9.0 in a borate buffer. The enantioselectivity of hydrobenzoin increased remarkably with increasing SI-S-beta-CD concentration and the enantioseparation depended on CD complexation between hydrobenzoin-borate and SI-S-beta-CD. The (S,S)-enantiomer of hydrobenzoin-borate complexes interacted more strongly than the (R,R)-enantiomer with SI-S-beta-CD. The enantiomers of hydrobenzoin could be baseline-resolved in the presence of SI-S-beta-CD at a concentration as low as 0.1% w/v, whereas the three test analytes were simultaneously enantioseparated with addition of 0.3% w/v SI-S-beta-CD or at concentrations >2.0% w/v in a borate buffer and 0.5% w/v in a phosphate background electrolyte at pH 9.0. Compared with the results obtained previously using randomly sulfated beta-CD (MI-S-beta-CD) in a borate buffer, enantioseparation of these three benzoin compounds is more advantageously aided by SI-S-beta-CD as the chiral selector. The enantioselectivity of hydrobenzoin depended greatly on the degree of substitution of sulfated beta-CD. Moreover, binding constants of the enantiomers of benzoin compounds to SI-S-beta-CD and those of hydrobenzoin-borate complexes to SI-S-beta-CD were evaluated for a better understanding of the role of CD complexation in the enantioseparation and chiral recognition. Enantiomer migration reversal of hydrobenzoin could be observed by varying the concentration of beta-CD, while keeping SI-S-beta-CD at a relatively low concentration. SI-S-beta-CD and beta-CD showed the same chiral recognition pattern but they exhibited opposite effects on the mobility of the enantiomers.  相似文献   

10.
Ràfols C  Poza A  Fuguet E  Rosés M  Bosch E 《Electrophoresis》2002,23(15):2408-2416
The experimental conditions that produce analyte peak splitting in micellar electrokinetic capillary chromatography (MEKC) have been systematically investigated. The system studied was a neutral phosphate buffer and sodium dodecyl sulfate (SDS) micelles as pseudostationary phase. A number of analytes showing a wide variety of hydrophobicity values and several organic solvents as sample diluents have been tested. Peak splitting phenomena are mainly due to the presence of organic solvent in the sample solution. They increase with the hydrophobicity of the analyte and decrease with the increase of the surfactant concentration. When hydrophobic compounds are analyzed the suggested ways to avoid split peaks are: (i) the use of 1-propanol or 1-butanol as sample diluent instead of methanol or acetonitrile or (ii) the use of high concentration of surfactant in the separating solution when the analyte must be dissolved in pure methanol or acetonitrile.  相似文献   

11.
A practical chiral capillary electrophoresis method using randomly sulfated beta-cyclodextrin was developed for the quantitative determination of the chiral purity of a pharmaceutical compound. A systematic method development approach was conducted by modifying selected parameters such as the concentration of the chiral selectors, buffer pH, organic modifiers, buffer concentrations and type, temperature and applied voltage. The results of the investigation permitted an improved understanding of the separation mechanism. Two facile strategies for the reversal of the enantiomer elution order are also described. The optimized method was validated in terms of variability of the chiral selector, linearity, sensitivity, accuracy, recovery, ruggedness, and precision.  相似文献   

12.
Several hundred drug substances approved by the U.S. Food and Drug Administration are chiral molecules. For the enantiomeric purity assessment, current practice is to develop separation techniques using chiral columns or mobile phase modifiers to separate enantiomers before detection. An alternative approach is to use currently accepted HPLC assay methods and use chiral-specific detectors to confirm whether the correct enantiomer is present. In this paper, adding a circular dichroism (CD) detector to an achiral HPLC method from the US Pharmacopeia (USP) is shown to be amenable for the determination of the enantiomeric purity of epinephrine, a substance used to treat anaphylaxis. This HPLC-UV-CD approach was able to detect the inactive D-(+) enantiomer at 1% of the total epinephrine composition. The linearity, accuracy, and precision of HPLC-UV-CD were evaluated and compared to analyses using a chiral HPLC method. Additionally, an epinephrine drug product was analyzed for assay (concentration) and enantiomeric purity. The results from achiral and chiral methods were identical within the experimental error. Overall, achiral chromatography performed using a USP method with CD detection may serve as a general means of determining chiral drug enantiomer purity and avoids the need for the development of additional chiral-specific methods for each individual drug.  相似文献   

13.
Sweeping, an on‐line sample concentration technique in CE, is the picking and accumulation of analytes by the pseudostationary phase or complexing additive. In the presence of an electric field, the analytes concentrated at the additive front that initially penetrated the sample zone. Here, we describe the sweeping of cationic alprenolol enantiomers using sulfated β‐CD and organic solvent. The separation solution contained the anionic additive while ACN was in the sample solution. With fused silica capillaries, positive polarity, and solutions buffered at pH 3, the direction of the enantiomers' effective electrophoretic mobility was the same as the electrophoretic mobility (or electrophoretic mobility without additive). When the amount of ACN in the sample was increased (i.e. 60%), the interaction between the analytes and additive became negligible. This caused the sweeping boundary to shift from the electrophoretically moving β‐CD front to the zone between the sample and separation solution. The equation that described the narrowing of injected sample zone was derived. The performance of sweeping with 60% ACN in the sample was then studied under different operating conditions (e.g. type of injection, injection time, and CD concentration). The low interaction between enantiomers and additive gave only moderate increases in sensitivity (approximately tenfold), but was improved when field enhancement was used during electrokinetic injection. With a conductivity difference (separation/sample solution) of 70 and a short injection time of 30 s at 20 kV, peak improvements of >100‐fold was easily achieved.  相似文献   

14.
The present study was conducted in order to evaluate the cyclodextrin (CD)-mediated chiral separation of peptide enantiomers as uncharged analytes at pH 5.3 using randomly sulfated beta-cyclodextrin, heptakis-6-sulfato-beta-CD and heptakis-(2,3-diacetyl-6-sulfato)-beta-CD as chiral selectors. Although less effective compared to stronger acidic conditions, the CDs proved to be suitable chiral selectors for the present set of peptides at pH 5.3. The carrier ability of the negatively charged CDs upon reversal of the applied voltage may also be exploited leading to a reversal of the migration order. In addition, reversal of the enantiomer migration order upon increasing the buffer pH from 2.5 to 5.3 was also observed for Ala-Tyr in the presence of randomly sulfated beta-CD, for Ala-Phe, Ala-Tyr, Phe-Phe, Asp-PheNH(2) and Gly-Ala-Phe in the presence of heptakis-6-sulfato-beta-CD, and for Phe-Phe and Ala-Leu in the presence of heptakis-(2,3-diacetyl-6-sulfato)-beta-CD. The migration behavior could be explained on the basis of the complexation constants and the mobilities of the peptide-CD complexes. While a change in the affinity pattern of the CDs upon increasing the pH was observed for some peptides, complex mobility was the primary factor for other peptide-CD combinations affecting the enantiomer migration order at the two pH values studied.  相似文献   

15.
The chiral separation of a substituted imidazole p38 MAP kinase inhibitor and its intermediates was investigated using capillary electrophoresis (CE) with various sulfated cyclodextrins. After initial screens, a single CE chiral method with a randomly sulfated beta-CD was selected for the evaluation of chiral purity for all three compounds. Operational parameters, such as the concentration of the chiral selectors, background electrolyte (or mobile phase) pH, organic modifiers, and temperature were varied in order to achieve an optimized method. The optimal method was validated in terms of linearity, sensitivity, precision, ruggedness, and specificity.  相似文献   

16.
Grard S  Morin P  Ribet JP 《Electrophoresis》2002,23(15):2399-2407
Throughout the separation of chiral basic drugs by capillary electrophoresis (CE) with neutral hydroxypropyl-beta-cyclodextrin (HP-beta-CD) as chiral selector, the sensitivity of detection has been improved by using field-amplified sample injection (FASI). In the present work, this on-line stacking method has been used to detect low ng/mL levels of cationic enantiomers of a new adrenoreceptor antagonist in plasma. A systematic study of the parameters affecting on-line concentration of these enantiomers (nature of the preinjection plug, composition of sample solvent, injection times of water and sample plugs) has been performed enabling the detection sensitivity of antagonist enantiomers to be improved by 180 times compared with usual hydrodynamic injection. The quantification of each adrenoreceptor antagonist enantiomer in plasma samples was then performed in the 2-100 ng/mL (or 8-400 nM) concentration range after a solid-phase extraction step. Using this FASI-CE-UV procedure, the limit of quantification (LOQ) for each enantiomer was in the low ng/mL concentration range (3 ng/mL or 10 nM).  相似文献   

17.
The highly sulfated gamma-CD (HS-gamma-CD) is a chiral selector widely used in CE for the enantioseparation of pharmaceutical compounds. This paper investigated different approaches to reduce the stereoselective analysis time of amphetamine (AT) derivatives according to the chiral selector concentration in the BGE. With high HS-gamma-CD concentration, tested analytes were separated in 3.5 min as anionic complexes with short-end injection technique in reversed polarity mode. However, this procedure presented some limitations in terms of efficiency and resolution, excessive Joule heating and poor compatibility with MS detection. With low HS-gamma-CD concentration, compounds were separated as cations. Conventional approaches to reduce CE analysis time demonstrated critical resolution between some analytes. Therefore, the use of the partial-filling technique compatible with MS detection was carried out. Under optimized conditions, the analysis time for the chiral separation of seven AT like compounds was reduced to 6 min. Moreover, sensitivity of CE-MS was sufficient for the determination of ATs in plasma following a simple liquid-liquid extraction.  相似文献   

18.
Continuous free flow electrophoresis was investigated as a tool for the preparative chiral separation of piperoxan using a sulfated cyclodextrin chiral additive. In the absence of chiral additive, the sample stream was deflected cathodically. However, the presence of sulfated cyclodextrin in the run buffer caused anodic deflection and splitting of the sample stream into two streams, each enriched in one enantiomer. Although the sulfated cyclodextrin used was comprised of a mixture of homologues and isomers, this polydispersity did not seem to significantly impact band dispersion. Sample introduction rates ranged from approximately 0.9-7.2 mg h-1. Maximum resolution was 0.53, using an applied voltage of 220 V, buffer composition of 0.075% sulfated cyclodextrin, 7.6 mM citrate (pH 3), 4.5 degrees C.  相似文献   

19.
Twelve basic analytes, including ephedrine and its structurally related compounds, were used to study the influence of capillary temperature on enantioselectivity in CE enantioseparations under reversed polarity mode using sulfated β‐CD (S‐β‐CD) as chiral selectors. All of the effective mobility changes of (+)‐enantiomers between 35 and 20°C were higher than those of (–)‐enantiomers whosoever enantioselectivity increased or decreased with an increase in temperature. However, the unusual temperature effect that enantioselectivity was increased with an increase of temperature was observed for the compounds with hydroxyl substitution on phenyl ring and had relationship with the molecular structures. With performing NMR studies on the selected selector‐analyte complexes, the results led to a deeper understanding of the chiral discrimination process. Inspection of the complexation‐induced chemical shifts (CICS) of the enantiomers showed that the phenyl ring sits deeply and slantways in the cavity of S‐β‐CD and alkyl chain pointed out of the wider rim of S‐β‐CD with ion–ion and hydrogen bond interactions between analytes and S‐β‐CD.  相似文献   

20.
The kinetic method has been extended to enantiomeric excess (ee) determinations on amino acids present in mixtures. Singly charged trimeric clusters [Cu(II)(ref*)(2)(A(m)) - H](+) are readily generated by electrospraying solutions containing Cu(II), a chiral reference ligand (ref*), and the amino acids (analytes A(m), m = 1-3). A trimeric cluster ion for each amino acid is individually mass-selected and then collisionally activated to cause dissociation by competitive loss of either the reference ligand or the analyte. For each analyte in the mixture, as shown from separate experiments, the logarithm of the ratio of the fragment abundances for the complex containing one enantiomer of this analyte expressed relative to that for the fragments of the corresponding complex containing the other enantiomer is linearly related to the enantiomeric composition of the amino acid. Formation and dissociation of each trimeric complex ion are shown to occur independently of the presence of other analytes. Chiral selectivity appears to be an intrinsic property and the chiral selectivity R(chiral(m)) measured from the mixture of analytes is equal to R(chiral) measured for the pure analyte. The sensitive nature of the methodology and the linear relationship between the logarithm of the fragment ion abundance ratio and the optical purity, characteristic of the kinetic method, allow the determination of chiral impurities of less than 2% ee in individual compounds present in mixtures by simply recording the ratios of fragment ion abundances in a tandem mass spectrum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号