首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The synthesis and photophysical properties are described for a series of porphyrin, phthalocyanine and pyrazinoporphyrazine derivatives which bear four or eight peripheral fluorenyl substituents as antennae. Representative examples are 5,10,15,20-tetra(9,9-dihexyl-9H-fluoren-2-yl)porphyrin (2), 5,10,15,20-tetrakis[4-(9,9-dihexyl-9H-fluoren-2-yl)phenyl]porphyrin (3), 2,3,9,10,16,17,23,24-octakis(9,9-dihexyl-9H-fluoren-2-yl)-29H,31H-phthalocyanine (8) and 2,3,9,10,16,17,23,24-octakis[4-(9,9-dihexyl-9H-fluoren-2-yl)phenyl]-29H,31H-tetrapyrazinoporphyrazine (9). Palladium-mediated Suzuki-Miyaura cross-coupling reactions have been key steps for attaching the substituents. The compounds are deep-red emitters: lambda(max)(em)=659 (3), 737 (8) and 684 nm (9). Their absorption and emission spectra, their fluorescence lifetimes and quantum yields are correlated with the structures of the macrocycles and the substituents. The solution fluorescence quantum yields of porphyrin derivatives substituted with fluorene (2-4) and terphenyl substituents (7) (Phi(f)=0.21-0.23) are approximately twice that of tetraphenylporphyrin. For phthalocyanine derivative 8, Phi(f) was very high (0.88). Specific excitation of the fluorene units of 8 produced emission from both of them (lambda(max)=480 nm) and also from the phthalocyanine core (lambda(max)=750 nm), indicating a competitive rate of energy transfer and radiative decay of the fluorenes. Organic light-emitting devices (OLEDs) were made by spin-coating techniques by using a polyspirobifluorene (PSBF) copolymer as the host blended with 3 (5 wt. %) in the configuration ITO/PEDOT:PSS/PSBF copolymer:3/Ca/Al. Deep-red emission (lambda(max)=663 nm; CIE coordinates x=0.70, y=0.27) was observed with an external quantum efficiency of 2.5 % (photons/electron) (at 7.5 mA cm(-2)), a low turn-on voltage and high emission intensity (luminance) of 5500 cd m(-2) (at 250 mA/ m(2)).  相似文献   

2.
We have synthesized two cyclam‐cored dendrimers appended with dendrons of two different types by proper protection/deprotection of the cyclam unit. The resulting dendrimers contain six naphthyl and two dansyl units ( N6 D2 ) or two dansyl and six naphthyl units ( N2 D6 ) at the periphery. Their photophysical properties have been compared to those of a dendrimer containing 8 dansyl units ( D8 ) and a previously investigated dendrimer containing 8 naphthyl units ( N8 ). The absorption spectra are those expected on the basis of the number of chromophores, demonstrating that no ground state interaction takes place. The emission spectra of N2 D6 and N6 D2 show naphthalene localized and naphthalene excimer emission similar to those observed in the case of N8 , together with a much stronger dansyl emission with maximum at 525 nm. Addition of CF3SO3H to dendrimer solutions in CH3CN/CH2Cl2 1:1 (v/v) leads to protonation of the aliphatic amine units of the cyclam core at first and then of the aromatic amine of each dansyl chromophores. Cyclam can be diprotonated and this affects dansyl absorption and, most significantly, emission bands by a charge perturbation effect. Each dansyl unit is independently protonated in both dendrimers. The most interesting photophysical feature of these heterofunctionalized cyclam‐cored dendrimers is the occurrence of an intradendrimer photoinduced energy transfer from naphthyl to dansyl chromophores of two different dendrons (interdendron mechanism). The efficiency of this process is 50 % for N6 D2 and it can be increased up to 75 % upon protonation of the cyclam core and formation of N6 D2 (2H+). This arises from the fact that protonation of the amine units of the cyclam prevents formation of exciplexes upon naphthyl excitation, thus shutting down one of the deactivation processes of the fluorescent naphthyl excited state.  相似文献   

3.
A recently developed combinatorial method utilizing angular dependence of evaporation rate was used to create compositional spread thin film libraries of Tris(2-pyridin-2-yl-indolizino[3,4,5-ab] isoindole-C(1), N('))iridium(III) [Ir(pin)(3)] and 4,4(')-N,N(')-dicarbazol-biphenyl (CBP) composite, with the molar fraction of Ir(pin)(3) complex varying in the 0.0003Ir(pin)(3) energy transfer proceeds by the Forster mechanism with the Forster radius of 30 A. The CBPxIr(pin)(3) composite has the highest photoluminescence quantum efficiency approximately 0.95, for chi(Ir(pin)(3) )=0.03 and is characterized by a structured green emission (lambda(max)=538 nm) originating from the ligand-centered (pi-pi(*))(3) state of the Ir(pin)(3) complex. On the contrary, the PL spectra of Ir(pin)(3) bulk are characterized by a weak red emission (lambda(max)=673 nm) attributed to the lowest metal-to-ligand charge transfer state. A statistical analysis based on a binomial distribution indicates that the emission from the (pi-pi(*))(3) state is quenched in Ir(pin)(3) molecules that are in a direct contact with each other.  相似文献   

4.
We have synthesized nine 2,9-aryl-substituted 1,10-phenanthrolines (1-9) with the aim of rationalizing their electronic absorption and luminescence properties in both the basic and acid form. The latter are generated upon addition of trifluoroacetic acid to CH2Cl2 solutions of 1-9 and their formation is unambiguously evidenced by UV-vis absorption and 1H NMR spectroscopy. 1-9 can be subdivided into three groups, depending on their chemical structure and luminescence behavior. 1-3 are symmetrically substituted p-dianisylphenanthrolines which exhibit relatively intense violet fluorescence in CH2Cl2 (lambda(max) ca. 400 nm, Phi(fl) = 0.12-0.33) and are strongly quenched and substantially red-shifted upon protonation (lambda(max) ca. 550 nm, Phi(fl) = 0.010-0.045). 4-5 are 2,6-dimethoxyphenylphenanthrolines with faint luminescence in both the basic and acid form. 6-9 are various unsymmetric aryl-substituted-phenanthrolines and their relatively strong fluorescence (lambda(max) ca. 400 nm, Phi(fl) = 0.08-0.24) is red-shifted and substantially enhanced following protonation (lambda(max) ca. 475 nm, Phi(fl) = 0.16-0.50). The markedly different trends in the electronic absorption and fluorescence spectra are rationalized by means of both time-dependent Hartree-Fock and density functional theory by using hybrid functionals to assign the excited states. Interestingly, protonation of 1-9 also occurs in spin-coated films simply exposed to vapors of acid, and the reaction can be signaled by the color tuning of the emission signal (vapoluminescence). This observation makes substituted phenanthrolines potential candidates as proton sensors also in the solid phase.  相似文献   

5.
曾毅  李迎迎  袁钊  李嫕 《化学学报》2009,67(23):2714-2720
合成了外围修饰有萘基团的0~3代聚酰胺-胺树枝形聚合物GnN (n=0~3), 化合物通过了IR, 1H NMR, 13C NMR和MALDI TOF的表征. 稳态光物理研究表明, 甲醇溶液中GnN外围萘基团与骨架胺之间发生电子转移过程, 形成最大发射峰在450 nm的激基复合物, 萘的荧光被明显猝灭; 当GnN骨架被质子化, 分子内光致电子转移过程和萘与骨架胺基间激基复合物的形成被抑制, 萘单体荧光发射大大增强; 由于质子化后树枝形聚合物骨架趋于伸展构象, 外围萘基团间相互作用增强, 部分形成最大发射峰在400 nm的激基缔合物.  相似文献   

6.
A series of Cu(I) complexes formulated as [Cu(2)(mu-X)(2)(PPh(3))(L)(n)] were prepared with various mono- and bidentate N-heteroaromatic ligands (X = Br, I; L = 4,4'-bipyridine, pyrazine, pyrimidine, 1,5-naphthyridine, 1,6-naphthyridine, quinazoline, N,N-dimethyl-4-aminopyridine, 3-benzoylpyridine, 4-benzoylpyridine; n = 1, 2). Single-crystal structure analyses revealed that all the complexes have planar {Cu(2)X(2)} units. Whereas those with monodentate N-heteroaromatic ligands afforded discrete dinuclear complexes, bidentate ligands formed infinite chain complexes with the ligands bridging the dimeric units. The long Cu...Cu distances (2.872-3.303 A) observed in these complexes indicated no substantial interaction between the two Cu(I) ions. The complexes showed strong emission at room temperature as well as at 80 K in the solid state. The emission spectra and lifetimes in the microsecond range were measured at room temperature and at 80 K. The emissions of the complexes varied from red to blue by the systematic selection of the N-heteroaromatic ligands (lambda(em)(max): 450 nm (L = N,N-dimethyl-4-aminopyridine) to 707 nm (L = pyrazine)), and were assigned to metal-to-ligand charge-transfer (MLCT) excited states with some mixing of the halide-to-ligand (XL) CT characters. The emission energies were successfully correlated with the reduction potentials of the coordinated N-heteroaromatic ligands, which were estimated by applying a simple modification based on the calculated stabilization energies of the ligands by protonation.  相似文献   

7.
Using ligands synthesized by Suzuki cross-coupling methodology, new phosphorescent homoleptic tris-cyclometalated complexes have been obtained, namely fac-[Ir(Cz-2-Fl(n)Py)(3)] (1 d-f) and fac-[Ir(Cz-3-Fl(n)Py)(3)] (2 d-f), which are solution-processible triplet emitters (Cz denotes N-hexylcarbazole, n is the number of 9,9'-dihexylfluorene (Fl) units (n=0,1,2) and Py is pyridine). In all cases, Py and Fl are substituted at the 2- and 2,7-positions, respectively, and Cz moieties are substituted by either Py or Fl at the 2- or 3-positions, in series 1 and 2, respectively. The oxidation potential of 1 d studied by cyclic voltammetry ({E{{{\rm ox}\hfill \atop 1/2\hfill}}}=0.14 V, versus Ag/AgNO(3), CH(2)Cl(2)) is less positive (i.e. raised HOMO level) compared to that of the isomer 2 d ({E{{{\rm ox}\hfill \atop 1/2\hfill}}}=0.30 V), where the Cz-nitrogen is meta to the Ir center. Ligand-centered oxidations occur at more positive potentials, leading to 7+ oxidation states with good chemical reversibility and electrochemical quasi-reversibility, for example, for 2 f {E{{{\rm ox}\hfill \atop {\rm pa}\hfill}}} =0.45 (1e), 0.95 (3e), 1.24 V (3e). Striking differences are seen in the solution-state photophysical data between complexes [Ir(Cz-2-Py)(3)] (1 d) and [Ir(Cz-3-Py)(3)] (2 d), in which the Cz moiety is bonded directly to the metal center: for the latter there is an 85 nm blue-shift in emission, a decrease in the luminescence lifetime and an increase in the PLQY value. Organic light emitting devices were made by spin-coating using polyspirobifluorene:bis(triphenyl)diamine (PSBF:TAD) copolymer as host and the complexes 1 d or 2 d as dopants. Turn-on voltages are low (3-4 V). With 1 d orange light is emitted at lambda(max)=590 nm with an EQE of 1.3 % (at 7.5 mA cm(-2)) and an emission intensity (luminance) of 4354 cd m(-2) (at 267 mA m(-2)). The green emission from 2 d devices (lambda(max)=500 nm) is due to the reduced electron-donating ability of the carbazole unit in 2 d. Recording the EL spectra of the 1 d device at 6 V (current density, 100 mA cm(-2)) established that the time to half brightness was about 9 h under continuous operation with no change in the spectral profile, confirming the high chemical stability of the complex.  相似文献   

8.
A new maltoheptaose derivative was prepared as a useful substrate for continual assay of alpha-amylase. The maltoheptaoside has thionaphtyl group as a fluorescent energy donor at the reducing end and dansyl group as an acceptor group at the non-reducing end. Excitation of the thionaphthyl group at 290 nm results in emission at 523 nm from the dansyl group, while the emission from the thionaphthyl group is quenched by the dansyl group. This fluorescence energy transfer is reduced by the hydrolytic action with alpha-amylase and a significant decrease in the dansyl emission concomitant with an increase in the thionaphthyl emission was observed. Usefulness of this substrate was demonstrated for sensitive and continuous assay of alpha-amylase from Aspergillus oryzae.  相似文献   

9.
The fluorescence studies of coagulating protein extracted from Moringa oleifera seeds have been studied using steady-state intrinsic fluorescence. The fluorescence spectra are dominated by tryptophan emission and the emission peak maximum (lambda(max)=343+ or -2nm) indicated that the tryptophan residue is not located in the hydrophobic core of the protein. Changes in solution pH affected the protein conformation as indicated by changes in the tryptophan fluorescence above pH 9 whereas the ionic strength had minimal effect. The exposure and environments of the tryptophan residue were determined using collisional quenchers.  相似文献   

10.
In this paper we show how it is possible to control the nature and the efficiency of collective photophysical processes in a network composed of two different fluorescent units organized on the surface of silica nanoparticles. Such a structure is obtained by covering nanoparticles with a layer of dansyl moieties (Dns) and by partially protonating them in solution. The two fluorophores Dns and Dns.H(+) have very different photophysical properties and can be selectively excited and detected. The interaction between the two units Dns and Dns.H(+) has been first investigated in a reference compound obtained by derivatizing 1,6-hexanediamine with two dansyl units. The photophysical characterization of this compound (absorption spectra, fluorescence spectra, quantum yield, and lifetime) showed that the two moieties can be involved both in energy and electron-transfer processes. Dansylated nanoparticles were prepared by modifying preformed silica nanoparticles with dansylated (3-aminopropyl)trimethoxysilane. Photophysical studies indicated that protonation has a dramatic effect on the fluorescence of the nanoparticles, leading to the quenching of both the protonated units and the surrounding nonprotonated ones. This amplified response to protonation, due to charge-transfer interactions, is solvent-dependent and is less efficient in pure chloroform with respect to acetonitrile/chloroform (5/1 v/v) mixtures. The reduced efficiency of the electron-transfer processes responsible for the quenching makes energy transfer competitive to such an extent that in pure chloroform excitation energy migration takes place from Dns.H(+) to Dns with great efficiency.  相似文献   

11.
The Zn(2+) coordination chemistry and luminescent behavior of two ligands constituted by an open 1,4,7-triazaheptane chain functionalized at both ends with 2-picolyl units and either a methylnaphthyl (L1) or a dansyl (L2) fluorescent unit attached to the central amino nitrogen are reported. The fluorescent properties of the ZnL1(2+) and ZnL2(2+) complexes are then exploited toward detection of anions. L1 in the pH range of study has four protonation constants. The fluorescence emission from the naphthalene fluorophore is quenched either at low or at high pH values leading to an emissive pH window centered around pH = 5. In contrast, in L2 the fluorescence emission from the dansyl unit occurs only at basic pH values. In the case of L1, a red-shifted band appearing in the visible region was assigned to an exciplex emission involving the naphthalene and the tertiary amine of the polyamine chain. L1 forms Zn(2+) mononuclear complexes of ZnH(p)L1((p+2)+) stoichiometry with p = 1, 0, -1. Formation of the ZnL1(2+)species produces a strong enhancement of the L1 luminescence leading to an extended emissive pH window from pH = 5 to pH = 9. Addition of several anions to this last complex leads to a partial quenching effect. On the contrary, the fluorescence emission of L2 is partially quenched upon complexation with Zn(2+) in the same pH window (5 < pH < 9). The lower stability of ZnL2(2+) with respect to ZnL1(2+) suggests a lack of involvement of the sulfonamide group in the first coordination sphere. However, there is spectral evidence for an interesting photoinduced binding of the sulfonamide nitrogen to Zn(2+). While addition of diphosphate, triphosphate, citrate, and D,L-isocitrate to a solution of ZnL2(2+) restores the fluorescence emission of the system (lambda max ca. 600 nm), addition of phosphate, chloride, iodide, and cyanurate do not produce any significant change in fluorescence. Moreover, this system would permit one to differentiate diphosphate and triphosphate over citrate and d, l-isocitrate because the fluorescence enhancement observed upon addition of the first anions is much sharper. The ZnL2(2+) complex and its mixed complexes with diphosphate, triphosphate, citrate, and D,L-isocitrate have been characterized by (1)H, (31)P NMR, and Electrospray Mass Spectrometry.  相似文献   

12.
Numerous reports describe the photoluminescence of two- and three-coordinate gold(I)-phosphine complexes, but emission in their analogous four-coordinate complexes is almost unknown. This work examines the luminescence of tetrahedral gold(I) complexes of the types [Au(diphos)(2)]PF(6) (diphos = 1,2-bis(diphenylphosphino)ethane, 1) and [Au(2)(tetraphos)(2)](PF(6))(2) (tetraphos = (R,R)-(+/-)/(R,S)-1,1,4,7,10,10-hexaphenyl-1,4,7,10-tetraphosphadecane, (R,R)-(+/-)/(R,S)-2). Although nonemitting in solution, these complexes luminesce with an intense yellow color (lambda(max) 580-620 nm) at 293 K in the solid state or when immobilized as molecular dispersions within solid matrixes. The excited-state lifetimes of the emissions (tau 4.1-9.4 micros) are markedly dependent on the inter- and intramolecular phenyl-phenyl pairing interactions present. At 77 K in an ethanol glass, two transitions are observed: a minor emission at lambda(max) 415-450 nm and a major emission at lambda(max) 520-595 nm. For [Au(1)(2)]PF(6), lifetimes of tau 251.0 +/- 20.5 micros were determined for the former transition and tau 14.9 +/- 4.6 micros for the latter. Density functional theory (DFT) calculations and comparative studies indicate that the former of these emissions involves triplet LMCT pi(Ph) --> Au(d)-P(p) transitions associated with individual P-phenyl groups. The latter emissions, which are the only ones observed at 293 K, are assigned to LMCT pi(Ph-Ph) --> Au(d)-P(p) transitions associated with excited P-phenyl dimers. Other tetrahedral gold(I)-phosphine complexes containing paired P-Ph substituents display similar emissions. The corresponding phosphine ligands, whether free, protonated, or bound to Ag(I), do not exhibit comparable emissions. Far from being rare, luminescence in four-coordinate Au(I)-phosphine complexes appears to be general when stacked P-phenyl groups are present.  相似文献   

13.
This paper describes the design of novel base-discriminating fluorescent (BDF) nucleobases and their application to single nucleotide polymorphism (SNP) typing. We devised novel BDF nucleosides, (Py)U and (Py)C, which contain a pyrenecarboxamide chromophore connected by a propargyl linker. The fluorescence spectrum of the duplex containing a (Py)U/A base pair showed a strong emission at 397 nm on 327 nm excitation. In contrast, the fluorescence of duplexes containing (Py)U/N base pairs (N = C, G, or T) was considerably weaker. The proposed structure of the duplex containing a matched (Py)U/A base pair suggests that the high polarity near the pyrenecarboxamide group is responsible for the strong A-selective fluorescence emission. Moreover, the fluorescence of the duplex containing a (Py)U/A base pair was not quenched by a flanking C/G base pair. The fluorescence properties are quite different from previous BDF nucleobases, where fluorescence is quenchable by flanking C/G base pairs. The duplex containing the C derivative, (Py)C, selectively emitted fluorescence when the base opposite (Py)C was G. The drastic change of fluorescence intensity by the nature of the complementary base is extremely useful for SNP typing. (Py)U- and (Py)C-containing oligodeoxynucleotides acted as effective reporter probes for homogeneous SNP typing of DNA samples containing c-Ha-ras and BRCA2 SNP sites.  相似文献   

14.
A tetrametallic iridium-ytterbium complex has been synthesised that shows sensitized near-infrared emission (lambda(max) = 976 nm) upon excitation of the iridium unit in the visible region (400 nm) due to efficient energy transfer from the iridium units to the Yb(III) ion. The iridium phosphorescence is quenched nearly quantitatively while the ytterbium ion emits brightly in the NIR.  相似文献   

15.
The protonation of a simple meso-tetraphenylporphyrin in an organic-aqueous system was found to be induced by the counteranions. During the process of protonation, the counteranion of the proton sources binds with the porphyrin core and thus promotes the complexation of the porphyrin and protons. The interaction of porphyrin and anion was characterized by fluorescence, UV-visible, cyclic voltammetry, (1)H NMR, and IR. Moreover, it could be exploited in selective fluorescent sensing of Cl(-). The sensing mechanism was based on extraction of protons from the aqueous phase into the organic phase by free base porphyrin and simultaneous coextraction of Cl(-), which promoted porphyrin protonation, and hence resulted in significant changes of the porphyrin fluorescence spectra. Selectivity trends turned out to be dependent upon the lipophilicity of anion and the binding affinity and structure complementarity between the protonated porphyrin and anions. The fluorescence enhancement of the porphyrin band at 684 nm showed modest selectivity for Cl(-) and NO(3)(-).  相似文献   

16.
Aiming at the high-contrast photochromic switching of fluorescence emission and its perfect nondestructive readout, a polymer film highly loaded with a specific photochromic compound, 1,2-bis(2'-methyl-5'-phenyl-3'-thienyl)perfluorocyclopentene (BP-BTE), and an excited-state intramolecular proton-transfer (ESIPT)-active compound, 2,5-bis(5'-tert-butyl-benzooxazol-2'-yl)hydroquinone (DHBO), was employed in this work. The special class of photochrome, BP-BTE, has negligible absorbance at 415 nm both in the open form and in the 365 nm photostationary state (PSS), and the ESIPT fluorophore, DHBO, emits large Stokes' shifted (175 nm; lambda(max)(abs) = 415 nm, lambda(max)(em) = 590 nm) and enhanced fluorescence (Phi(F)(powder) = 10%, Phi(F)(soln) = 2%). Bistability, high-contrast switching (on/off fluorescence switching ratio >290), nondestructive readout (over 125000 shots), and erasability were all together accomplished in this novel recording medium.  相似文献   

17.
We report the absorption spectra and the photophysical properties (fluorescence spectrum, quantum yield, and lifetime) of four dendrimers of the poly(propylene amine) family (POPAMs) functionalized at the periphery with naphthylsulfonamide (hereafter called naphthyl) units. Each dendrimer Gn, where n = 1 to 4 is the generation number, comprises 2n + 1 (i.e., 32 for G4) naphthyl functions in the periphery and 2n + 1--2 (i.e., 30 for G4) tertiary amine units in the branches. All the experiments have been carried out in acetonitrile solutions. Comparison with two reference compounds (N-methyl-naphthalene-2-sulfonamide, A, and N-(3-dimethylamino-propyl)-2-naphthalene-1-sulfonamide, B) has shown that the absorption spectra of the dendrimers are significantly different from those expected from the component units. Furthermore, the intense fluorescence band of the naphthyl unit (lambda max = 343 nm; phi = 0.15, tau = 8.5 ns) is strongly quenched in the dendrimers. The quenching effect increases with increasing generation and is accompanied by the appearance of a weak and broad emission tail at lower energy. Protonation of the amine units of the dendrimers by addition of CF3SO3H (triflic) acid causes a strong increase in the intensity of the naphthyl luminescence and a change in the form of the emission tail. The shapes of the titration curves depend on dendrimer generation, but in any case, the effect of the acid can be fully reversed by successive addition of a base (tributylamine). The results obtained show that in the dendrimers there are interactions (both in the ground and excited states) between naphthyl units as well as between naphthyl units and amine units of the branches; this gives rise to dimer/excimer and charge-transfer/exciplex excited states. Titration with Zn(CF3SO3)2 has the same effect as acid titration, as far as the final emission spectrum is concerned, but a much higher concentration of Zn(CF3SO3)2 has to be used and the shapes of the titration plots are very different. Titration with Co(NO3)2.6H2O causes a much smaller increase in the intensity of the naphthyl fluorescence compared with Zn(CF3SO3)2. The results obtained have shown that protonation and metal coordination can reveal the presence of ground and excited state electronic interactions in functionalized poly(propylene amine) dendrimers, and that the presence of photo-active units in the dendrimers can be useful to reveal some peculiar aspects of the protonation and metal coordination processes.  相似文献   

18.
We have investigated the complexation of the luminescent Nd(3+), Eu(3+), Gd(3+), Tb(3+), Er(3+), and Yb(3+) ions by a polylysin dendrimer containing 21 amide groups in the interior and, in the periphery, 24 chromophoric dansyl units which show an intense fluorescence band in the visible region. Most of the experiments were performed in 5:1 acetonitrile/dichloromethane solution at 298 K. On addition of the lanthanide ions to dendrimer solutions, the fluorescence of the dansyl units is quenched; in Nd(3+), Er(3+), and Yb(3+), a sensitized near-infrared emission of the lanthanide ion is observed. At low metal ion concentrations, each dendrimer hosts only one metal ion and when the hosted metal ion is Nd(3+) or Eu(3+), the fluorescence of all the 24 dansyl units of the dendrimer is quenched with unitary efficiency. Quantitative measurements were performed in a variety of experimental conditions, including protonation of the dansyl units and measurements in rigid matrix at 77 K where a sensitized Eu(3+) emission could also be observed. The results obtained have been interpreted on the basis of the energy levels and redox potentials of dendrimer and metal ions.  相似文献   

19.
A novel fluorescent probe N-(N-(2-(4-morpholinyl)ethyl)-4-acridinecarboxamide)-alpha-alanine (N-(N-(ME)-4-ACA)-alpha-ALA) was synthesized. The structure was characterized by 1H NMR, MS, elemental analysis, fluorescent and ultraviolet spectra. This new compound exhibited high binding affinity to DNA, intense fluorescence and high water solubility. Experiment indicated that the fluorescent intensity was quenched when DNA was added. A method for DNA determination based on the quenching fluorescence (lambda(ex)=258nm, lambda(em)=451nm) of N-(N-(ME)-4-ACA)-alpha-ALA was established. Under optimal conditions (pH 7.2, CN-(N-(ME)-4-ACA)-alpha-ALA)=3 x 10(-6) mol L(-1)), the linear range is 0.1-4.0 microg mL(-1) for both fish semen (fsDNA) and calf thymus DNA (ct-DNA). The corresponding determination limits are 4.6 ng mL(-1) for fsDNA and 5.1 ng mL(-1) for ct-DNA, respectively. The relative standard deviation is 1.0%. Thus this compound can be used as a DNA fluorescent probe. The experiments proved that the interaction mode between N-(N-(ME)-4-ACA)-alpha-ALA and DNA was groove binding. The modified Rosenthal's graphical method gave the binding constant of 1.0 x 10(6) L mol(-1) and a binding size of 0.31 base pairs per bound drug molecule.  相似文献   

20.
Dynamics and energetics for intramolecular excimer formation of a diarylsilane, di-9H-fluoren-9-yldimethylsilane (DFYDMS) have been investigated by means of ps time-resolved fluorescence spectroscopy and ab initio calculation. Multiple fluorescence decay curves were globally deconvolved to generate time-resolved fluorescence spectra and decay-associated spectra (DAS), from which species-associated spectra (SAS) were obtained. It is shown in the global analysis that there are at least three excited states: Two states are the locally excited (LE) states (lambda(max) approximately 320 nm) having lifetimes of 0.70 +/- 0.04 and 1.75 +/- 0.02 ns, and another is the excimer state (lambda(max) approximately 400 nm) having a lifetime of 7.34 +/- 0.02 ns. The species which decays with 0.70 ns evolves into a species with a red-shifted spectrum, which in turn decays in 7.34 ns. The experimental and ab initio results indicate that the rise time of 0.70 ns corresponds to the conversion of the initial S(1) LE state having a near sandwich geometry to the S(1) excimer state adopting a true sandwich geometry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号