首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Dynamic NMR investigations of a number of 2-amino-3-aroyl-4,6-diaryl-pyrylium salts were carried out. The barrier to rotation of the partial C, N double bond was determined and proved to be in the range of 62 to 63 kJ/mol. Quantum chemical calculations of bond orders and electron densities of the different atoms in the molecules show the distinct double bond character of the exocyclic C, N bond. This is in agreement with the relatively high barrier to rotation. By quantum chemical ab initio 3-21G calculations, the dynamic behaviour of this kind of compounds was simulated; two pairs (image and mirror image) of ground state conformations, in coincidence with the experiment, were obtained. Received: 10 May 1996 / Revised: 1 July 1996 / Accepted: 4 July 1996  相似文献   

2.
M. Shanshal 《Tetrahedron》1972,28(1):61-72
MINDO/2-SCF-MO calculations for the ground state properties of N-methyl- and N-phenyl-azomethin have been carried out. The calculated rotation barrier for the methyl group in N-methyl-azomethin was 0·8 kcal/mol, the eclipsed conformation being most stable. The calculated rotation barrier about the CN bond in the protonated methylazomethin was 27·9 kcal/mol. MINDO/1-SCF-MO treatment for the N-inversion barrier of the unprotonated species yielded 13·00 kcal/mol. Similar MINDO/2 calculations for N-phenylazomethin yielded 4·0 kcal/mol for the rotation barrier of the phenyl ring around the CN= bond, the perpendicular conformation of the ring to the CNC plane being most stable. For the corresponding N protonated derivative the value 27·3 kcal/mol was calculated for the rotation barrier around the CN bond. MINDO/1 treatment yielded an inversion barrier of 14·0 kcal/mol for N-phenylazomethin.  相似文献   

3.
The (1)H and (13)C NMR spectra of a number of push-pull alkenes were recorded and the (13)C chemical shifts calculated employing the GIAO perturbation method. Of the various levels of theory tried, MP2 calculations with a triple-zeta-valence basis set were found to be the most effective for providing reliable results. The effect of the solvent was also considered but only by single-point calculations. Generally, the agreement between the experimental and theoretically calculated (13)C chemical shifts was good with only the carbons of the carbonyl, thiocarbonyl, and cyano groups deviating significantly. The substituents on the different sides of the central C=C partial double bond were classified qualitatively with respect to their donor (S,S < S,N < N,N) and acceptor properties (C identical with N < C=O < C=S) and according to the ring size on the donor side (6 < 7 < 5). The geometries of both the ground (GS) and transition states (TS) of the restricted rotation about the central C=C partial double bond were also calculated at the HF and MP2 levels of theory and the free energy differences compared with the barriers to rotation determined experimentally by dynamic NMR spectroscopy. Structural differences between the various push-pull alkenes were reproduced well, but the barriers to rotation were generally overestimated theoretically. Nevertheless, by correlating the barriers to rotation and the length of the central C=C partial double bonds, the push-pull alkenes could be classified with respect to the amount of hydrogen bonding present, the extent of donor-acceptor interactions (the push-pull effect), and the level of steric hindrance within the molecules. Finally, by means of NBO analysis of a set of model push-pull alkenes (acceptors: -C identical with N, -CH=O, and -CH=S; donors: S, O, and NH), the occupation numbers of the bonding pi orbitals of the central C=C partial double bond were shown to quantitatively describe the acceptor powers of the substituents and the corresponding occupation numbers of the antibonding pi orbital the donor powers of the substituents. Thus, for the first time an estimation of both the acceptor and the donor properties of the substituents attached to the push-pull double bond have been separately quantified. Furthermore, both the balance between strong donor/weak acceptor substituents (and vice versa) and the additional influences on the barriers to rotation (hydrogen bonding and steric hindrance in the GSs and TSs) could be differentiated.  相似文献   

4.
The structural and energetic changes associated with C–N bond rotation in a squaric acid derivative as well as in formamide, 3-aminoacrolein and vinylamine have been studied theoretically using ab initio molecular orbital methods. Geometry optimizations at the MP2(full)/6-31+G* level confirmed an increase in the C–N bond length and a smaller decrease in the C=O length on going from the equilibrium geometry to the twisted transition state. Other geometrical changes are also discussed. Energies calculated at the QCISD(T)/6-311+G** level, including zero-point-energy correction, show barrier heights decreasing in the order formamide, squaric acid derivative, 3-aminoacrolein and vinylamine. The origin of the barriers were examined using the atoms-in-molecules approach of Bader and the natural bond orbital population analysis. The calculations agree with Pauling's resonance model, and the main contributing factor of the barrier is assigned to the loss of conjugation on rotating the C–N bond. Finally, molecular interaction potential calculations were used to study the changes in the nucleophilicity of N and O (carbonyl) atoms upon C–N rotation, and to obtain a picture of the abilities of the molecules to act in nonbonded interactions, in particular hydrogen bonds. The molecular interaction potential results confirm the suitability of squaramide units for acting as binding units in host–guest chemistry. Received: 13 March 2002 / Accepted: 23 June 2002 / Published online: 21 August 2002  相似文献   

5.
The structure and internal rotation of the 2-methyl-2-nitropropane molecule is studied by electron diffraction and quantum chemical calculations with the use of microwave and vibrational spectroscopy data. The electron diffraction data are analyzed within the general intramolecular anharmonic force field model and the quantum chemical pseudoconformer model, considering the adiabatic separation of the degree of freedom of large amplitude motion, i.e., the internal rotation of the NO2 group. The equilibrium eclipsed configuration of the C s symmetry molecule has the following experimental bond lengths and valence angles: r e(N=O) = 1.226//1.226(8) Å, r e(C–N)//r e(C–C) = 1.520//1.515/1,521(4) Å, ∠еC–C–N = = 109.1/106,1(8)°, ∠еO=N=O = 124.2(6)°, ∠eC–C–Havg = 110(3)°. The equilibrium geometry parameters are well consistent with MP2/cc-pVTZ quantum chemical calculations and microwave spectroscopy data. The thermally average parameters previously obtained within the small vibration model show a satisfactory agreement with the new results. The electron diffraction data used in this work do not allow a reliable determination of the barrier to internal rotation. However, at a barrier of 203(2) cal/mol, which is derived from the microwave study, it follows from the electron diffraction data that the equilibrium configuration must correspond to an eclipsed arrangement of C–C and N=O bonds, which is also consistent with the results of quantum chemical calculations of various levels.  相似文献   

6.
The structure of a number of 2-exo-methylene substituted quinazolines and benzodiazepines, respectively, 1, 3a,b, 4 (X=–CN,–COOEt) and their 2-cyanoimino substituted analogues 2, 3c,d (X=–CN,–SO2C6H4–Me(p) was completely assigned by the whole arsenal of 1D and 2D NMR spectroscopic methods. The E/Z isomerism at the exo-cyclic double bond was determined by both NMR spectroscopy and confirmed by ab initio quantum chemical calculations; the Z isomer is the preferred one, its amount proved dependent on steric hindrance. Due to the push–pull effect in this part of the molecules the restricted rotation about the partial C2,C11 and C2,N11 double bonds, could also be studied and the barrier to rotation measured by dynamic NMR spectroscopy. The free energies of activation of this dynamic process proved very similar along the compounds studied but being dependent on the polarity of the solvent. Quantum chemical calculations at the ab initio level were employed to prove the stereochemistry at the exo-cyclic partial double bonds of 1–4, to calculate the barriers to rotation but also to discuss in detail both the ground and the transition state of the latter dynamic process in order to better understand electronic, inter- and intramolecular effects on the barrier to rotation which could be determined experimentally. In the cyanoimino substituted compounds 2, 3c,d, the MO ab initio calculations evidence the isomer interconversion to be better described by the internal rotation process than by the lateral shift mechanism.  相似文献   

7.
Twelve push–pull ethylene derivatives, NH2CH=CHX, NH2C≡CCH=CHX, and OCHX=CHX (with X=BH2, C≡N, NO2, and CH2 +) have been studied by ab initio calculations. The rotational barrier around the central double bond was chosen as a probe for push–pull effects, as push–pull effects would remove electron density from the central double bond. The amount of reduction of double bond character will increase with the contribution of the zwitterionic resonance hybrid structure. Complete geometry optimizations and calculations of vibrational frequencies were performed for all minima and transition state structures of these 12 systems. The calculations were carried out with the B3LYP and MP2 methods using the 6-311+G(d,p) and the 6-311++G(d,p) basis sets. All the systems investigated exhibited properties consistent with push–pull effects such as elongated C=C double bonds, dipolar electronic structures, and reduced barriers to internal rotation.  相似文献   

8.
用从头计算分子轨道法和密度泛函理论 ,在HF/6 31G 和B3LYP/6 31G 水平上对ClnAlNHn 和HnAlNHn(n =1~ 3)及其碎片分子的几何构型、电子结构、振动光谱和化学热力学性质进行了理论研究。结果表明 ,优化几何参数与实验值相吻合。Cl2 AlNH2 和H2 AlNH2 分子中 ,Al-N键为由一个σ键和一个π键组成的双重键 ,旋转势垒分别为 34.10和 5 4 .35kJ·mol- 1。而Cl3AlNH3和H3AlNH3分子中 ,Al-N键为σ型单键 ,对应的旋转势垒为 0 .31和 2 .5 0kJ·mol- 1,有较小的势垒 ,易于旋转。化学热力学计算表明 ,ClnAlNHn 和HnAlNHn 分子中 ,Al-N键能的大小顺序为△Hn =2>△Hn =1>△Hn =3.  相似文献   

9.
The structure and internal rotation of the bromonitromethane molecule are studied using electron diffraction analysis and quantum chemical calculations. The electron diffraction data are analyzed within the models of a general intramolecular anharmonic force field and quantum chemical pseudoconformers to account for the adiabatic separation of a large amplitude motion associated with the internal rotation of the NO2 group. The following experimental bond lengths and valence angles are obtained for the equilibrium orthogonal configuration of the molecule with Cs symmetry: re(N=O) = 1.217(5) Å, re(C–N) = 1.48(2) Å, re(C–Br) = 1.919(5) Å, ∠еBr–C–N = 109.6(9)°, ∠еO=N=O = 125.9(9)°. The equilibrium geometry parameters are in good agreement with CCSD(T)/cc-pVTZ calculations. Thermally averaged parameters are calculated using the equilibrium geometry and quadratic and cubic quantum chemical force constants. The barrier to internal rotation cannot be determined reliably based on the electron diffraction data used in this work. There is a 82% probability that the equilibrium configuration with orthogonal C–Br and N=O bonds is most preferable, and internal rotation barrier does not exceed 280 cm-1, which agrees with CCSD(T)/cc-pVTZ calculations.  相似文献   

10.
The conformational flexibility of 1,3-cyclohexadiene and its analogs — pyridine and pyrimidine derivatives— was studied by HF/6-31G** ab initio quantum chemical calculations. The potential surface calculations and normal vibration shape analysis show that the molecules exhibit two weakly coupled ring deformation modes. One of the modes may be described as rotation around the C(sp3)-C(sp2) bond leading to a transition state of the ring inversion process. The other mode involves flattening of the butadiene fragment and a loss of planarity for endocyclic double bonds without any pronounced changes in the conformation of the saturated part of the molecule. An accurate calculation of the ring inversion barrier demands inclusion of electron correlation effects. Translated fromZhurnal Strukturnoi Khimii, Vol. 41, No. 3, pp. 474-479, May-June, 2000.  相似文献   

11.
The influence of various metal ions on the character of the amide CN bond has been studied by means of NMR line shape analysis of the changes in the activation energy for internal rotation about this bond. All cations investigated raise the barrier, the increase was found to be approximately linearly correlated to the inverse radii of the ions. MO SCF calculations with small gaussian basis sets have been employed for the theoretical discussion of these results. Theoretical and experimental results concerning the ion influence on the CN bond are in satisfactory agreement. The changes in the electronic structure of the amide molecule and the character of the CN bond are illustrated using localized orbitals and electron density maps.  相似文献   

12.
The magnitude of the stabilizing interaction between an aliphatic C[bond]H bond attached to an ammonium nitrogen and a carbonyl oxygen was evaluated by ab initio calculations at the MP2/6-311++G** level of theory. Attractive R(3)N(+)-C-H...O[double bond]C interactions play an important role in supramolecular recognition and various types of stereoselective catalysis. Our calculations show that R(3)N(+)-C-H...O[double bond]C is the strongest hydrogen bond of the C-H...O type known to date. Such hydrogen bonds remain as stabilizing interactions even in water for amide acceptors.  相似文献   

13.
The microwave spectra of propa-1,2-dienyl selenocyanate, H(2)C==C==CHSeC[triple bond]N, and cyclopropyl selenocyanate, C(3)H(5)SeC[triple bond]N, are reported. The spectra of the ground and two vibrationally excited states of the (80)Se isotopologue and the spectrum of the ground state of the (78)Se isotopologue were assigned for one rotameric form of H(2)C==C[double bond, length as m-dash]CHSeC[triple bond]N. This conformer is characterized by a C-C-Se-C dihedral angle of 129(5) degrees from synperiplanar (0 degrees ) and is shown to be the global minimum of H(2)C[double bond, length as m-dash]C[double bond, length as m-dash]CHSeC[triple bond]N. The spectra of the ground and of three vibrationally excited states of the (80)Se isotopologue, as well as of the ground state of the (78)Se isotopologue of one rotamer of C(3)H(5)SeC[triple bond]N were assigned. This conformer has a H-C-Se-C dihedral angle of 80(4) degrees from synperiplanar and is at least 3 kJ mol(-1) more stable than any other form of the molecule. The microwave study has been augmented by quantum chemical calculations at the B3LYP/6-311+ +G(3df,3pd) and MP2/6-311+ +G(3df,3pd) levels of theory.  相似文献   

14.
Two green fluorescent protein (GFP) chromophore analogs (4Z)-4-(N,N-dimethylaminobenzylidene)-1-methyl-2-phenyl-1,4-dihydro-5H-imidazolin-5-one (DMPI) and (4Z)-4-(N,N-diphenylaminobenzylidene)-1-methyl-2-phenyl-1,4-dihydro-5H-imidazolin-5-one (DPMPI) were investigated using femtosecond fluorescence up-conversion spectroscopy and quantum chemical calculations with the results being substantiated by HPLC and NMR measurements. The femtosecond fluorescence transients are found to be biexponential in nature and the time constants exhibit a significant dependence on solvent viscosity and polarity. A multicoordinate relaxation mechanism is proposed for the excited state relaxation behavior of the model GFP analogs. The first time component (τ(1)) was assigned to the formation of twisted intramolecular charge transfer (TICT) state along the rotational coordinate of N-substituted amine group. Time resolved intensity normalized and area normalized emission spectra (TRES and TRANES) were constructed to authenticate the occurrence of TICT state in subpicosecond time scale. Another picosecond time component (τ(2)) was attributed to internal conversion via large amplitude motion along the exomethylenic double bond which has been enunciated by quantum chemical calculations. Quantum chemical calculation also forbids the involvement of hula-twist because of high activation barrier of twisting. HPLC profiles and proton-NMR measurements of the irradiated analogs confirm the presence of Z and E isomers, whose possibility of formation can be accomplished only by the rotation along the exomethylenic double bond. The present observations can be extended to p-HBDI in order to understand the role of protein scaffold in reducing the nonradiative pathways, leading to highly luminescent nature of GFP.  相似文献   

15.
NMR measurements of chemical exchange in a push-pull ethylene, dissolved in a number of different solvents, are presented. These are complemented by high-level electronic structure calculations, using both gas-phase conditions and those which simulate solvents. The results show that it is essential to include entropy effects in order to understand the observed trends. For instance, the equilibrium state in this case represents the state with lowest Gibbs free energy, as it must, but not the lowest enthalpy. The particular molecule is methyl 3-dimethylamino-2-cyanocrotonate (MDACC). The geometry at the carbon-carbon double bond can be either E or Z with roughly equal populations at ambient temperature. We have measured the equilibrium constant and the rates for the exchange between these states in a number of solvents: methanol, chloroform, acetonitrile, toluene, dichloromethane, acetone, and tetrahydrofuran. Furthermore, the N,N-dimethylamino group attached to the double bond also shows restricted rotation, and this has been measured in both the E and Z conformations. The equilibrium constant and the three rotational barriers provide excellent probes of the solvent effects. Electronic structure calculations with a number of basis sets up to the 6-311++G(2df,2p) level, using both Hartree-Fock and density functional (B3LYP) methods were used to predict the E and Z ground states, and the three transition states. The calculations were done for an isolated molecule and also for solvent models representing toluene, acetone, and ethanol. The E conformation is more stable in solution, is the structure in the crystal, and is also the prediction for the gas phase from the calculations. However, the dependence of the equilibrium constant on temperature shows that the Z conformation actually has lower enthalpy. The stability of the E conformation in solution must be due to entropic effects. Similarly, the solvent effect on the E-Z barrier is primarily due to entropy. The measured enthalpy of activation is similar in all the solvents, but the entropy of activation increases with the solvent polarity. The barrier to rotation of the N,N-dimethylamino group shows a combination of entropy and enthalpy effects. This combination of experiments and theory gives an extraordinarily detailed picture of solvent-solute interactions.  相似文献   

16.
Semiempirical (PM3), ab initio (HF/6-31+G(d) and MP2/6-31+G(d)), and density functional (pBP/DN) calculations are used to investigate the rotation barrier of the carbon-nitrogen bond in a simple enolate anion: lithium acetamide, 1. For comparison, the amidate anion 2, vinylamine 3, and a simulated dimer 4 were also calculated. In all systems, the barrier to rotation was found to be less than 10 kcal x mol(-1) in agreement with experiment. The correlated calculations show the barrier to be lowest for the anion 2. The results show conjugation effects in 1 and 2 comparable to that in vinylamine 3 and imply that polarization effects are more important than charge transfer in amine conjugation.  相似文献   

17.
Potential energy curves of aryl-substituted methanimines along the C = N bond twisting and the in-plane inversion of the N atom were obtained by AM1-SDCI calculations, and the photochemical E/Z isomerization paths were elucidated. An aromatic group introduced at the C atom of the C = N group has little effect on the S0 surface for the inversion and rotation paths, while it has a significant effect on the shape of the T1 curve along the rotation path. It is suggested that phenylmethanimine and 2-anthrylmethanimine undergo photoisomerization by the rotation mechanism. The methoxy group introduced at the N atom raises the inversion barrier on the S0 state, while it lowers the 90°-twistedT1 energy. TheT1 potential energy curves of N-methoxy-1-phenylethanimine and N-methoxy-1-(2-anthryl)ethanimine indicate that the former undergoes a two-way isomerization and the latter a one-way isomerization by the rotation mechanism, which is in accordance with experiment.  相似文献   

18.
The geometric structure of 2,3,5,6-tetrafluoroanisole and the potential function for internal rotation around the C(sp2)-O bond were determined by gas electron diffraction (GED) and quantum chemical calculations. Analysis of the GED intensities with a static model resulted in near-perpendicular orientation of the O-CH3 bond relative to the benzene plane with a torsional angle around the C(sp2)-O bond of tau(C-O) = 67(15) degrees. With a dynamic model, a wide single-minimum potential for internal rotation around the C(sp2)-O bond with perpendicular orientation of the methoxy group [tau(C-O) = 90 degrees] and a barrier of 2.7 +/- 1.6 kcal/mol at planar orientation [tau(C-O) = 0 degrees] was derived. Calculated potential functions depend strongly on the computational method (HF, MP2, or B3LYP) and converge adequately only if large basis sets are used. The electronic energy curves show internal structure, with local minima appearing because of the interplay between electron delocalization, changes in the hybridization around the oxygen atom, and the attraction between the positively polarized hydrogen atoms in the methyl group and the fluorine atom at the ortho position. The internal structure of the electronic energy curves mostly disappears if zero-point energies and thermal corrections are added. The calculated free energy barrier at 298 K is 2.0 +/- 1.0 kcal/mol, in good agreement with the experimental determination.  相似文献   

19.
[Reaction: see text]. A regioselective and efficient approach toward 6-amino-5-benzoyl-1-substituted 2(1H)-pyridinones by reaction of acyclic ketene aminals with propiolic acid ester was developed. The effect of the solvent and temperature on the regioselectivity of the reaction and the compatibility of the target compounds to functional group manipulations was examined. Substrates with an ortho substituent build atropisomers due to the restricted rotation around the C-N bond. The enantiomers were separated, and the barrier of rotation was determined experimentally. Quantum chemical calculations allowed a ranking of the barrier heights, and a new mechanism of rotation by deformation of the central pyridinone moiety is proposed.  相似文献   

20.
 The analysis of 31P and 15N NMR data of a series of 40 iminophosphines R-P=N-R′ reveals that the E/Z-stereochemistry of the PN double bond can be predicted on the basis of a simultaneous comparison of the values of δ31P and 1JPN. Received: 31 May 1996/Revised: 2 July 1996/Accepted: 5 July 1996  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号