首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We demonstrate nuclear magnetic resonance (NMR) imaging of the flow and diffusion of laser-polarized xenon (129Xe) gas undergoing convection above evaporating laser-polarized liquid xenon. The large xenon NMR signal provided by the laser-polarization technique allows more rapid imaging than one can achieve with thermally polarized gas-liquid systems, permitting shorter time-scale events such as rapid gas flow and gas-liquid dynamics to be observed. Two-dimensional velocity-encoded imaging shows convective gas flow above the evaporating liquid xenon, and also permits the measurement of enhanced gas diffusion near regions of large velocity variation.  相似文献   

2.
一种可用于极化~3He实验的新型磁场系统   总被引:1,自引:0,他引:1       下载免费PDF全文
王文钊  胡碧涛  郑皓  屠小青  高朋林  闫松  郭文传  闫海洋 《物理学报》2018,67(17):176701-176701
原子核自旋极化的~3He气体已被深入研究并广泛用于各种科学实验.在过去的极化~3He实验中,为了减小磁场梯度对纵向弛豫时间的影响,通常会建造大尺寸的亥姆霍兹线圈来提供所需均匀度的主磁场环境.本文通过计算得到了新的六正方形线圈系统,可以为极化~3He实验提供小型高均匀性的磁场装置.其中线圈系√统内部超过30%的区域磁场梯度满足(|▽B_x|~2+|▽B_y|~2)/B_0 10~(-4)cm~(-1),这一均匀区域比例超过了现在所有用于极化~3He实验的线圈装置.对于其他需要大均匀区域磁场环境的研究实验,新的六线圈系统也具有很好的应用价值.  相似文献   

3.
Dynamic nuclear polarization (DNP) has recently received much attention as a viable approach to enhance the sensitivity of nuclear magnetic resonance (NMR) spectroscopy and the contrast of magnetic resonance imaging (MRI), where the significantly higher electron spin polarization of stable radicals is transferred to nuclear spins. In order to apply DNP-enhanced NMR and MRI signal to biological and in vivo systems, it is crucial to obtain highly polarized solution samples at ambient temperatures. As stable radicals are employed as the source for the DNP polarization transfer, it is also crucial that the highly polarized sample lacks residual radical concentration because the polarized molecules will be introduced to a biological system that will be sensitive to the presence of radicals. We developed an agarose-based porous media that is covalently spin-labeled with stable radicals. The loading of solvent accessible radical is sufficiently high and their mobility approximates that in solution, which ensures high efficiency for Overhauser mechanism induced DNP without physically releasing any measurable radical into the solution. Under ambient conditions at 0.35 T magnetic field, we measure the DNP enhancement efficiency of (1)H signal of stagnant and continuously flowing water utilizing immobilized stable nitroxide radicals that contain two or three ESR hyperfine splitting lines and compare them to the performance of freely dissolved radicals.  相似文献   

4.
磁共振成像(MRI)技术具有非侵入、无放射性的特点,在临床疾病诊断中具有独特的优势,但是肺部空腔的特殊结构使传统质子MRI无法对其直接成像.自旋交换光抽运(SEOP)方法可以使惰性气体原子的极化度增强4个量级以上,从而使肺部的气体MRI成为可能.该文介绍了超极化惰性气体肺部MRI的最新研究进展,包括超极化气体磁共振相关参数的测量方法、肺部通气结构成像、肺部气体交换功能成像,同时比较了常用于肺部MRI气体的优点和缺点.  相似文献   

5.
Gas transport across polymeric membranes is fundamental to many filtering and separation technologies. To elucidate transport mechanisms, and understand the behaviors of membrane materials, accurate measurement of transport properties is required. We report a new magnetic resonance imaging (MRI) methodology to measure membrane gas phase diffusion coefficients. The MRI challenges of low spin density and short gas phase relaxation times, especially for hydrogen gas, have been successfully overcome with a modified one-dimensional, single-point ramped imaging with T(1) enhancement, measurement. We have measured the diffusion coefficients of both hydrogen gas and sulfur-hexafluoride in a model polymeric membrane of potential interest as a gas separator in metal hydride batteries. The experimental apparatus is a modified one-dimensional diaphragm cell which permits measurement of the diffusion coefficient in experimental times of less than 1 min. The H(2) gas diffusion coefficient in the membrane was 0.54 +/- 0.01 mm(2)/s, while that of sulfur-hexafluoride was 0.14 +/- 0.01 mm(2)/s, at ambient conditions.  相似文献   

6.
The conventional polarized light imaging system can observe sub-microscopic molecular order non-destructively, quantitatively and without labeling or staining. Recently, a more sophisticated version, Abrio imaging system, than the conventional polarized light imaging system, was developed. This advanced polarized light imaging system has simplified the process of birefringent imaging, higher sensitivity and accuracy irrespective of sample orientation. By performing time-lapse observations using the advanced polarized light microscopy, we visualized mitotic spindles, especially kinetochore microtubules, of HeLa cells. Moreover, we successfully visualized the detailed structure of several filament bundles, which possibly are components of the contractile ring. Here, we report the potential of advanced polarized light imaging systems for imaging mitotic HeLa cells and the new insights obtained during this microscopic study.  相似文献   

7.
One of the challenges in functional brain imaging is integration of complementary imaging modalities, such as magnetoencephalography (MEG) and functional magnetic resonance imaging (fMRI). MEG, which uses highly sensitive superconducting quantum interference devices (SQUIDs) to directly measure magnetic fields of neuronal currents, cannot be combined with conventional high-field MRI in a single instrument. Indirect matching of MEG and MRI data leads to significant co-registration errors. A recently proposed imaging method--SQUID-based microtesla MRI--can be naturally combined with MEG in the same system to directly provide structural maps for MEG-localized sources. It enables easy and accurate integration of MEG and MRI/fMRI, because microtesla MR images can be precisely matched to structural images provided by high-field MRI and other techniques. Here we report the first images of the human brain by microtesla MRI, together with auditory MEG (functional) data, recorded using the same seven-channel SQUID system during the same imaging session. The images were acquired at 46 microT measurement field with pre-polarization at 30 mT. We also estimated transverse relaxation times for different tissues at microtesla fields. Our results demonstrate feasibility and potential of human brain imaging by microtesla MRI. They also show that two new types of imaging equipment--low-cost systems for anatomical MRI of the human brain at microtesla fields, and more advanced instruments for combined functional (MEG) and structural (microtesla MRI) brain imaging--are practical.  相似文献   

8.
Portal vein imaging is an important method for investigating portal venous disorders. However, the diagnostic requirements are not usually satisfied when using single imaging techniques. Diagnostic accuracy can be improved by combining different imaging techniques. Contrast agents that can be used for combined imaging modalities are needed. In this study, the feasibility of using microbubbles containing gadolinium (MCG) as contrast agents for both phase contrast imaging (PCI) and magnetic resonance imaging (MRI) are investigated. MCG were made by encapsulating sulfur hexafluoride (SF6) gas with gadolinium and lyophilized powder. Absorption contrast imaging (ACI) and PCI of MCG were performed and compared in vitro. MCG were injected into the main portal trunk of living rats. PCI and MRI were performed at 2 min and 10 min after MCG injection, respectively. PCI exploited the differences in the refractive index and visibly showed the MCG, which were not detectable by ACI. PCI could facilitate clear revelation of the MCG‐infused portal veins. The diameter of the portal veins could be determined by the largest MCG in the same portal vein. The minimum diameter of clearly detected portal veins was about 300 µm by MRI. These results indicate that MCG could enhance both PCI and MRI for imaging portal veins. The detection sensitivity of PCI and MRI could compensate for each other when using MCG contrast agents for animals.  相似文献   

9.
It is shown that thermally polarized 3He gas can be used to measure important physical parameters and to design, test, and tune imaging sequences. The bulk values of T1, T2, and the diffusion coefficient were measured in a glass cell containing a mixture of helium-3 (0.8 bar) and oxygen (0.2 bar). They were found to be T1 = 7 s, T2 = 2.4 s, and D = 1.6 cm2 s(-1). The relaxation times T2* and T1 and the apparent diffusion coefficient of thermally polarized helium-3 gas were measured in the rat lung, and these parameters were used to design a helium-3 optimized multi-spin-echo sequence which was shown to increase the signal-to-noise ratio sufficiently to obtain the first NMR-images of thermally polarized helium-3 in the rat lung.  相似文献   

10.
该文以超导量子干涉元件研究光激发氦三极化气体的低磁场磁共振与造影术.使用圆偏极化雷色光将氦三气体极化,超导量子干涉元件磁共振与造影之测量是以磁通耦合方式来进行,超导量子干涉元件是用铋锶钙铜氧高溫超导罐来隔离环境噪音.此方法测得的磁共振信号与影像相较于直接将样品置于杜瓦瓶下方有较高的信噪比,当样品无法靠近感测元件时,此装置具高信噪比特色.磁通耦合方式的超导量子干涉元件低磁场磁共振与造影术及其氦三极化气体的肺部造影在学术与应用上是相当有趣.  相似文献   

11.
We investigate the phase diagram of asymmetric two-component Fermi gases at zero temperature as a function of polarization and interaction strength. The equations of state of the uniform superfluid and normal phase are determined using quantum Monte Carlo simulations. We find three different mixed states, where the superfluid and the normal phase coexist in equilibrium, corresponding to phase separation between (a) the polarized superfluid and the fully polarized normal gas, (b) the polarized superfluid and the partially polarized normal gas, and (c) the unpolarized superfluid and the partially polarized normal gas.  相似文献   

12.
唐燕  胡松  赵立新  朱江平  何渝 《光学学报》2012,32(12):1205002-60
根据角谱理论建立不同偏振照明条件下的光子筛矢量衍射模型。在此基础上,对入射光分别为线偏振光、径向偏振光、切向偏振光三种特殊偏振状态下的光子筛聚焦光强分布进行了模拟分析。研究结果表明,对于大数值孔径光子筛,入射光的偏振特性将对光子筛聚焦光强分布产生巨大影响。线偏振光将使聚焦光斑沿偏振方向拉伸,切向偏振光产生的聚焦光斑具有"中空"结构,而径向偏振光所产生的聚焦光斑呈较为规则的圆形,且其焦深优于线偏照明情况。在激光直写及高分辨成像等光子筛典型应用中采用径向偏振照明将进一步提高系统分辨力。  相似文献   

13.
We introduce a noninvasive, quantitative magnetic resonance imaging (MRI) wind-tunnel measurement in flowing gas (>10 m s(-1)) at high Reynolds numbers (Re>10(5)). The method pertains to liquids and gases, is inherently three dimensional, and extends the range of Re to which MRI is applicable by orders of magnitude. There is potential for clear time savings over traditional pointwise techniques. The mean velocity and turbulent diffusivity of gas flowing past a bluff obstruction and a wing section at realistic stall speeds were measured. The MRI data are compared with computational fluid dynamics.  相似文献   

14.
In hyperpolarized (HP) noble-gas magnetic resonance imaging, large nuclear spin polarizations, about 100,000 times that ordinarily obtainable at thermal equilibrium, are created in 3He and 129Xe. The enhanced signal that results can be employed in high-resolution MRI studies of void spaces such as in the lungs. In HP gas MRI the signal-to-noise ratio (SNR) depends only weakly on the static magnetic field (B(0)), making very low-field (VLF) MRI possible; indeed, it is possible to contemplate portable MRI using light-weight solenoids or permanent magnets. This article reports the first in vivo VLF MR images of the lungs in humans and in rats, obtained at a field of only 15 millitesla (150 Gauss).  相似文献   

15.
16.
Within the last several years a number of technical developments have been made in magnetic resonance imaging (MRI) that can potentially impact clinical and research MR imaging applications in epilepsy. These include developments in instrumentation and in pulse sequences. Advances in instrumentation include higher capacity gradient systems and multiple receiver coils as directed to brain imaging. Advances in pulse sequence include use of fast or turbo-spin-echo techniques, variants of echo-planar imaging, and sequences such as fluid-attenuation inversion recovery (FLAIR) targeted to specific applications of brain imaging. The purpose of this paper is to review several of these developments.  相似文献   

17.
Inspired by the challenge of determining the nature of cracks on the ankles of Michelangelo's statue David, we discovered that one can image SF(6) gas in cracks in marble samples with alacrity. The imaging method produces images of gas with a signal-to-noise ratio (SNR) of 100-250, which is very high for magnetic resonance imaging (MRI) in general, let alone for an image of a gas at thermal equilibrium polarization. To put this unusual SNR in better perspective, we imaged SF(6) in a crack in a marble sample and imaged the lung tissue of a live rat (a more familiar variety of sample to many MRI scientists) using the same pulse sequence, the same size coils and the same MRI system. In both cases, we try to image subvoxel thin sheets of material that should appear bright against a darker background. By choosing imaging parameters appropriate for the different relaxation properties of SF(6) gas versus lung tissue and by choosing voxel sizes appropriate for the different goals of detecting subvoxel cracks on marble versus resolving subvoxel thin sheets of tissue, the SNR for voxels full of material was 220 and 14 for marble and lung, respectively. A major factor is that we chose large voxels to optimize SNR for detecting small cracks and we chose small voxels for resolving lung features at the expense of SNR. Imaging physics will cooperate to provide detection of small cracks on marble, but David's size poses a challenge for magnet designers. For the modest goal of imaging cracks in the left ankle, we desire a magnet with an approximately 32-cm gap and a flux density of approximately 0.36 T that weighs <500 kg.  相似文献   

18.
Three examples of thermally polarized gas NMR performed at New Mexico Resonance are presented to demonstrate its unique advantages in porous media studies. 1) In-vivo animal lung imaging by Kuethe et al., in which useful quality 3D images of rat lungs were obtained in 30 min. It is conjectured that comparable human lung images would take much less time to make, possibly by the ratio of body weights, a factor of several hundred. 2) The success of the lung imaging suggested other porous media as candidates for thermally polarized gas NMR. Caprihan and coworkers obtained excellent images from partially sintered ceramics and Vycor glass. Since then, Beyea has developed the technique of spatially resolved BET curves for ceramics and other nanoporous solids. In this way, surface area, pore size, and porosity, averaged over an image voxel, can be spatially resolved. This greatly aids in the characterization of such materials, especially with regards to spatial heterogeneities. 3) Finally, we describe Codd's propagator experiments on propane gas flowing through a packed bed of 300 microm beads. In order to increase signal-to-noise ratio, the flowing gas was pressurized to 170 kPa. Excellent quality propagators showing the discrete nature of the bead pack were obtained. This type of information is not available in comparable liquid studies because most spins will not diffuse far enough to sample the walls in the time available.  相似文献   

19.
The signal-to-noise ratio (SNR) performance and practicality issues of a four-element phased-array coil and an implantable coil system were compared for rat spinal cord magnetic resonance imaging (MRI) at 7 T. MRI scans of the rat spinal cord at T10 were acquired from eight rats over a 3 week period using both coil systems, with and without laminectomy. The results demonstrate that both the phased array and the implantable coil systems are feasible options for rat spinal cord imaging at 7 T, with both systems providing adequate SNR for 100-mum spatial resolution at reasonable imaging times. The implantable coils provided significantly higher SNR, as compared to the phased array (average SNR gain of 5.3x between the laminectomy groups and 2.5x between the nonlaminectomy groups). The implantable coil system should be used if maximal SNR is critical, whereas the phased array is a good choice for its ease of use and lesser invasiveness.  相似文献   

20.
We experimentally demonstrate field-free, three-dimensional alignment (FF3DA) of polyatomic asymmetric top molecules. We achieve FF3DA in sulfur dioxide gas using two time-delayed, orthogonally polarized, nonresonant, femtosecond laser pulses. Our method avoids the use of rotational revivals and is therefore more robust to temperature. The alignment is probed using time-delayed coincidence Coulomb explosion imaging. FF3DA will be important for all molecular imaging, dynamics, or spectroscopy experiments for which random alignment leads to a loss of information.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号